149 resultados para Cancellous Bone, Remodelling, Stereolithography, Finite Element Analysis, Simulation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Finite element modeling of the formation of pre-loaded damage in cement mantles of orthopaedic joint replacements was presented. The existence of cracking suggested a high level of residual stress. The direction of maximum principal stress vectors corresponded well with the observed crack orientation. Results suggested that cracking depends upon a combination of residual stress, porosity and temperature rise during polymerization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes an in situ diagnostic and prognostic (D&P) technology to monitor the health condition of insulated gate bipolar transistors (IGBTs) used in EVs with a focus on the IGBTs' solder layer fatigue. IGBTs' thermal impedance and the junction temperature can be used as health indicators for through-life condition monitoring (CM) where the terminal characteristics are measured and the devices' internal temperature-sensitive parameters are employed as temperature sensors to estimate the junction temperature. An auxiliary power supply unit, which can be converted from the battery's 12-V dc supply, provides power to the in situ test circuits and CM data can be stored in the on-board data-logger for further offline analysis. The proposed method is experimentally validated on the developed test circuitry and also compared with finite-element thermoelectrical simulation. The test results from thermal cycling are also compared with acoustic microscope and thermal images. The developed circuitry is proved to be effective to detect solder fatigue while each IGBT in the converter can be examined sequentially during red-light stopping or services. The D&P circuitry can utilize existing on-board hardware and be embedded in the IGBT's gate drive unit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The capability to numerically model the crushing behaviour of composite structures will enable the efficient design of structures with high specific energy absorption capacity. This is particularly relevant to the aerospace and automotive industries where cabin structures need to be shown to be crashworthy. In this paper, a three-dimensional damage model is presented, which accurately represents the behaviour of composite laminates under crush loading. Both intralaminar and interlaminar failure mechanisms are taken into account. The crush damage model was implemented in ABAQUS/Explicit as a VUMAT subroutine. Numerical predictions are shown to agree well with experimental results, accurately capturing the intralaminar and interlaminar damage for a range of stacking sequences, triggers and composite materials. The use of measured material parameters required by the numerical models, without the need to ‘calibrate’ this input data, demonstrates this computational tool's predictive capabilities

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of a virtual testing environment, as a cost-effective industrial design tool in the design and analysis of composite structures, requires the need to create models efficiently, as well as accelerate the analysis by reducing the number of degrees of freedom, while still satisfying the need for accurately tracking the evolution of a debond, delamination or crack front. The eventual aim is to simulate both damage initiation and propagation in components with realistic geometrical features, where crack propagation paths are not trivial. Meshless approaches, and the Element-Free Galerkin (EFG) method, are particularly suitable for problems involving changes in topology and have been successfully applied to simulate damage in homogeneous materials and concrete. In this work, the method is utilized to model initiation and mixed-mode propagation of cracks in composite laminates, and to simulate experimentally-observed crack migration which is difficult to model using standard finite element analysis. N

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the results of a full-scale site fire test performed on a cold-formed steel portal frame building with semi-rigid joints. The purpose of the study is to establish a performance-based approach for the design of such structures in fire boundary conditions. In the full-scale site fire test, the building collapsed asymmetrically at a temperature of 714°C. A non-linear elasto-plastic finite-element shell model is described and is validated against the results of the full-scale test. A parametric study is presented that highlights the importance of in-plane restraint from the side rails in preventing an outwards sway failure for both a single portal and full building geometry model. The study also demonstrates that the semi-rigidity of the joints should be taken into account in the design. The single portal and full building geometry models display a close match to site test results with failure at 682°C and 704°C, respectively. A design case is described in accordance with Steel Construction Institute design recommendations. The validated single portal model is tested with pinned bases, columns protected, realistic loading and rafters subject to symmetric uniform heating in accordance with the ISO 834 standard fire curve; failure occurs at 703°C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During extreme sea states so called impact events can be observed on the wave energy converter Oyster. In small scale experimental tests these impact events cause high frequency signals in the measured load which decrease confidence in the data obtained. These loads depend on the structural dynamics of the model. Amplification of the loads can occur and is transferred through the structure from the point of impact to the load cell located in the foundation. Since the determination of design data and load cases for Wave Energy Converters originate from scale experiments, this lack of confidence has a direct effect on the development.

Numerical vibration analysis is a valuable tool in the research of the structural load response of Oyster to impact events, but must take into account the effect of the surrounding water. This can be done efficiently by adding an added mass distribution, computed with a linearised potential boundary element method. This paper presents the development and validation of a numerical procedure, which couples the OpenSource boundary element code NEMOH with the Finite Element Analysis tool CodeAster. Numerical results of the natural frequencies and mode shapes of the structure under the influence of added mass due to specific structural modes are compared with experimental results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates the accuracy of new finite element modelling approaches to predict the behaviour of bolted moment-connections between cold-formed steel members, formed by using brackets bolted to the webs of the section, under low cycle fatigue. ABAQUS software is used as a modelling platform. Such joints are used for portal frames and potentially have good seismic resisting capabilities, which is important for construction in developing countries. The modelling implications of a two-dimensional beam element model, a three-dimensional shell element model and a three-dimensional solid element model are reported. Quantitative and qualitative results indicate that the three-dimensional quadratic S8R shell element model most accurately predicts the hysteretic behaviour and energy dissipation capacity of the connection when compared to the test results.