158 resultados para Calcium silicate
Resumo:
In this study, calcium phosphate (CaP) powders were blended with a three-dimensional printing (3DP) calcium sulfate (CaSO4)-based powder and the resulting composite powders were printed with a water-based binder using the 3DP technology. Application of a water-based binder ensured the manufacture of CaP:CaSO4 constructs on a reliable and repeatable basis, without long term damage of the printhead. Printability of CaP:CaSO4 powders was quantitatively assessed by investigating the key 3DP process parameters, i.e. in-process powder bed packing, drop penetration behavior and the quality of printed solid constructs. Effects of particle size, CaP:CaSO4 ratio and CaP powder type on the 3DP process were considered. The drop penetration technique was used to reliably identify powder formulations that could be potentially used for the application of tissue engineered bone scaffolds using the 3DP technique. Significant improvements (p < 0.05) in the 3DP process parameters were found for CaP (30-110 μm):CaSO4 powders compared to CaP (< 20 μm):CaSO4 powders. Higher compressive strength was obtained for the powders with the higher CaP:CaSO4 ratio. Hydroxyapatite (HA):CaSO4 powders showed better results than beta-tricalcium phosphate (β-TCP):CaSO4 powders. Solid and porous constructs were manufactured using the 3DP technique from the optimized CaP:CaSO4 powder formulations. High-quality printed constructs were manufactured, which exhibited appropriate green compressive strength and a high level of printing accuracy.
Resumo:
The chemical compositions of calcium phosphate materials are similar to that of bone making them very attractive for use in the repair of critical size bone defects. The bioresorption of calcium phosphate occurs principally by dissolution. To determine the impact of composition and flow conditions on dissolution rates, calcium phosphate tablets were prepared by slip casting of ceramic slips with different ratios of hydroxyapatite (HA) and ß-tricalcium phosphate (ß-TCP). Dissolution was evaluated at pH4 using both a static and dynamic flow regime. Both the composition of the HA:ß-TCP tablet and flow regime noticeably influenced the rate of dissolution; the 50:50 HA:ß-TCP composition demonstrating the greatest level of dissolution, and, exposure of the ceramic specimens to dynamic conditions producing the highest rate of dissolution. Understanding the impact of phase composition and flow condition with respect to the dissolution of calcium phosphate will aid in the development and improvement of materials for bone substitution.
Resumo:
A potential standard method for measuring the relative dissolution rate to estimate the resorbability of calcium-phosphate-based ceramics is proposed. Tricalcium phosphate (TCP), magnesium-substituted TCP (MgTCP) and zinc-substituted TCP (ZnTCP) were dissolved in a buffer solution free of calcium and phosphate ions at pH 4.0, 5.5 or 7.3 at nine research centers. Relative values of the initial dissolution rate (relative dissolution rates) were in good agreement among the centers. The relative dissolution rate coincided with the relative volume of resorption pits of ZnTCP in vitro. The relative dissolution rate coincided with the relative resorbed volume in vivo in the case of comparison between microporous MgTCPs with different Mg contents and similar porosity. However, the relative dissolution rate was in poor agreement with the relative resorbed volume in vivo in the case of comparison between microporous TCP and MgTCP due to the superimposition of the Mg-mediated decrease in TCP solubility on the Mg-mediated increase in the amount of resorption. An unambiguous conclusion could not be made as to whether the relative dissolution rate is predictive of the relative resorbed volume in vivo in the case of comparison between TCPs with different porosity. The relative dissolution rate may be useful for predicting the relative amount of resorption for calcium-phosphate-based ceramics having different solubility under the condition that the differences in the materials compared have little impact on the resorption process such as the number and activity of resorbing cells.
Resumo:
Induction of in vivo responses by implanted biomaterials is of great interest in the medical device field. Calcium phosphate bone cements (CPCs) can potentially promote natural bone remodelling and ingrowth in vivo and, as such are becoming more common place in a range of orthopaedic procedures. However, concerns remain regarding their mechanical and handling properties. Compressive modulus and fracture toughness of CPCs can be improved, without compromising injectability and setting time, through the incorporation of bovine collagen fibres1. Incorporation of marine derived collagen fibres has also yielded similar improvements2. It is hypothesised that, due to its role in bone formation and function, that incorporation of collagen in CPCs will also result in biological benefits.
The biological properties of α-TCP-CPC were largely unchanged by the incorporation of marine derived collagen. However, as a result of significant improvements to the mechanical properties, its incorporation may still result in a suitable alternative to some commercially available bone cements.
Resumo:
Several factors affecting the reactivity of pulverised fuel ash (pfa) as a precursor for geopolymer concrete have been investigated. These include physical and chemical properties of various pfa sources, inclusion of ground granulated blast furnace slag (ggbs), chemical activator dosages and curing temperature. Alkali-activated pfa was found to require elevated curing temperatures and high alkali concentrations. A mixture of sodium hydroxide and sodium silicate was used and this was shown to result in high strengths, as high as 70 MPa at 28-days. The presence of silicates in solution was found to be a key factor. Detailed physical and chemical characterisation was carried out on thirteen pfa sources from the UK. The most important factor affecting the reactivity was found to be the particle size of pfa. The loss on ignition (LOI) and the amorphous content are also important parameters that need to be considered for the selection of pfa for use in geopolymer concrete. The partial replacement of pfa by ground granulated blast furnace slag (ggbs) was found to be beneficial in not only avoiding the need for elevated curing temperatures but also in improving compressive strengths. Microstructural characterisation with scanning electron microscope (SEM) coupled with energy dispersive X-ray spectroscopy (EDS) was performed on pfa/ggbs pastes. The reaction product of pfa and ggbs in these binary systems was calcium aluminium silicate hydrate gel (C-A-S-H) with inclusion of Na in the structure.