240 resultados para CYCLE LASER-PULSE
Proton acceleration enhanced by a plasma jet in expanding foils undergoing relativistic transparency
Resumo:
Ion acceleration driven by the interaction of an ultraintense (2 × 1020 W cm-2) laser pulse with an ultrathin ( nm) foil target is experimentally and numerically investigated. Protons accelerated by sheath fields and via laser radiation pressure are angularly separated and identified based on their directionality and signature features (e.g. transverse instabilities) in the measured spatial-intensity distribution. A low divergence, high energy proton component is also detected when the heated target electrons expand and the target becomes relativistically transparent during the interaction. 2D and 3D particle-in-cell simulations indicate that under these conditions a plasma jet is formed at the target rear, supported by a self-generated azimuthal magnetic field, which extends into the expanded layer of sheath-accelerated protons. Electrons trapped within this jet are directly accelerated to super-thermal energies by the portion of the laser pulse transmitted through the target. The resulting streaming of the electrons into the ion layers enhances the energy of protons in the vicinity of the jet. Through the addition of a controlled prepulse, the maximum energy of these protons is demonstrated experimentally and numerically to be sensitive to the picosecond rising edge profile of the laser pulse.
Resumo:
The collective response of charged particles to intense fields is intrinsic to plasma accelerators and radiation sources, relativistic optics and many astrophysical phenomena. Here we show that a relativistic plasma aperture is generated in thin foils by intense laser light, resulting in the fundamental optical process of diffraction. The plasma electrons collectively respond to the resulting laser near-field diffraction pattern, producing a beam of energetic electrons with a spatial structure that can be controlled by variation of the laser pulse parameters. It is shown that static electron-beam and induced-magnetic-field structures can be made to rotate at fixed or variable angular frequencies depending on the degree of ellipticity in the laser polarization. The concept is demonstrated numerically and verified experimentally, and is an important step towards optical control of charged particle dynamics in laser-driven dense plasma sources.
Resumo:
A target irradiated with a high power laser pulse, blows off a large amount of charge and as a consequence the target itself becomes a generator of electromagnetic pulses (EMP) owing to high return current flowing to the ground through the target holder. The first measurement of the magnetic field induced by the neutralizing current reaching a value of a few kA was performed with the use of an inductive target probe at the PALS Laser Facility (Cikhardt et al. Rev. Sci. Instrum. 85 (2014) 103507). A full description of EMP generation should contain information on the spatial distribution and temporal variation of the electromagnetic field inside and outside of the interaction chamber. For this reason, we consider the interaction chamber as a resonant cavity in which different modes of EMP oscillate for hundreds of nanoseconds, until the EMP is transmitted outside through the glass windows and EM waves are attenuated. Since the experimental determination of the electromagnetic field distribution is limited by the number of employed antennas, a mapping of the electromagnetic field has to be integrated with numerical simulations. Thus, this work reports on a detailed numerical mapping of the electromagnetic field inside the interaction chamber at the PALS Laser Facility (covering a frequency spectrum from 100 MHz to 3 GHz) using the commercial code COMSOL Multiphysics 5.2. Moreover we carried out a comparison of the EMP generated in the parallelepiped-like interaction chamber used in the Vulcan Petawatt Laser Facility at the Rutherford Appleton Laboratory, against that produced in the spherical interaction chamber of PALS.
Resumo:
The use of strong-field (i.e. intensities in excess of 10(13) Wcm(-2)) few-cycle ultrafast (durations of 10 femtoseconds or less) laser pulses to create, manipulate and image vibrational wavepackets is investigated. Quasi-classical modelling of the initial superposition through tunnel ionization, wavepacket modification by nonadiabatically altering the nuclear environment via the transition dipole and the Stark effect, and measuring the control outcome by fragmenting the molecule is detailed. The influence of the laser intensity on strong-field ultrafast wavepacket control is discussed in detail: by modifying the distribution of laser intensities imaged, we show that focal conditions can be created that give preference to this three-pulse technique above processes induced by the pulses alone. An experimental demonstration is presented, and the nuclear dynamics inferred by the quasi-classical model discussed. Finally, we present the results of a systematic investigation of a dual-control pulse scheme, indicating that single vibrational states should be observable with high fidelity, and the populated state defined by varying the arrival time of the two control pulses. The relevance of such strong-field coherent control methods to the manipulation of electron localization and attosecond science is discussed.
Resumo:
The recent adiabatic saddle-point approach of Shearer et al. [ Phys. Rev. A 84 033409 (2011)] is extended to multiphoton detachment of negative ions with outer p-state electrons. This theory is applied to investigate the strong-field photodetachment dynamics of F- ions exposed to few-cycle femtosecond laser pulses, without taking into account the rescattering mechanism. Numerical calculations are considered for mid-infrared laser wavelengths of 1300 and 1800 nm at laser intensities of 7.7 × 1012, 1.1 × 1013, and 1.3 × 1013 W/cm2. Two-dimensional momenta saddle-point spectra exhibit a distinct distribution in the shape of a “smile” in the complex-time plane. Electron momentum distribution maps of direct electrons are investigated. These produce a distinct pattern of above-threshold detachment (ATD) concentric rings due to constructive and destructive quantum interference of electrons detached from their parent ions. Probability detachment distributions presented, capturing the influence of saturation effects that are found to become more significant with increasing laser intensity at a fixed wavelength. ATD photoangular distributions as functions of laser intensity and wavelength near channel closings are also investigated and found to be sensitive to initial-state symmetry. Nonmonotonic structures observed in the ejected photoelectron energy spectra are attributed to interference effects from coherent electronic wave packets. Additionally the profiles of all the photoelectron emission spectra show strong dependence on the carrier-envelope phase, indicating that it is a reliable parameter for characterizing the wave form of the pulse.
Comparison of experimental and simulated K-alpha yield for 400nm ultra-short pulse laser irradiation
Resumo:
The authors present experimental results showing how the use of a high contrast femtosecond laser system allows better optimization of K emission from a Cu target. The shorter scale-length preformed plasma is better optimized for resonance absorption of the laser light when the laser is moved away from best focus. The experimental data show a central peak of K emission at tight focus with strong secondary peaks at large offset. The use of these secondary peaks results in a much reduced hard x-ray background and should lead to shorter K pulses than at tight focus.
Resumo:
The viability of using beams of molecular ions as a target for strong field fragmentation studies using intense ultra-short laser pulses is demonstrated. In this way the production mechanism for multiply charged ions in strong fields may be elucidated.
Resumo:
An electrostatic trapping scheme for use in the study of light-induced dissociation of molecular ions is outlined. We present a detailed description of the electrostatic reflection storage device and specifically demonstrate its use in the preparation of a vibrationally cold ensemble of deuterium hydride (HD+) ions. By interacting an intense femtosecond laser with this target and detecting neutral fragmentation products, we are able to elucidate previously inaccessible dissociation dynamics for fundamental diatomics in intense laser fields. In this context, we present new results of intense field dissociation of HD+ which are interpreted in terms of recent theoretical calculations.