150 resultados para BRAIN ENDOTHELIAL-CELLS
Resumo:
Modifications of extant plasma proteins, structural proteins,and other macromolecules are enhanced in diabetes because of increased glycation (secondary to increased glucose concentrations) and perhaps because of increased oxidative stress, Increased glycation is present from the time of onset of diabetes, but the relation between diabetes and oxidative stress is less clear: increased oxidative stress may occur later in the course of disease, as vascular damage becomes established, or it may be a feature of uncomplicated diabetes, The combined effects of protein modification by glycation and oxidation may contribute to the development of accelerated atherosclerosis in diabetes and to the development of microvascular complications, Thus, even if not increased by diabetes, variations in oxidative stress may modulate the consequences of hyperglycemia in individual diabetic patients, In this review, the close interaction between glycation and oxidative processes is discussed, and the theme is developed that the most significant modifications of proteins are the result of interactions with reactive carbonyl groups, While glucose itself contains a carbonyl group that is involved in the initial glycation reaction, the most important and reactive carbonyls are formed by free radical-oxidation reactions damaging either carbohydrates (including glucose itself) or lipids, The resulting carbonyl-containing intermediate products then modify proteins, yielding "glycoxidation" and "lipoxidation" products, respectively, This common pathway for glucose and lipid-mediated stress, which may contribute to diabetic complications, is the basis for the carbonyl stress hypothesis for the development of diabetic complications.
Resumo:
The major components of blood vessels are the vascular endothelium and its supporting smooth muscle. Significant strides have been made in the understanding of the cellular and molecular biology of these two cell types and in particular their interactions have been the subject of much interest and debate over the past two decades. The vascular endothelium is now known to profoundly influence the synthetic and motor functions of the underlying smooth muscle and participate in the pathogenesis of all the major vascular disorders. Similarly, the vascular smooth muscle has important effects on the overlying endothelium, and any disruption in the cellular physiology of either cell type can result in dysfunction with important effects on blood flow and vascular permeability The majority of this accumulated knowledge relates to the vascular cells of the macrocirculation. Pericytes are the supporting cells of the microvasculature and a body of evidence is now available to show that similar regulatory mechanisms and vessel-wall cross-talk exists between these cells and the microvascular endothelium. Nowhere are these interactions more important than in the retinal microcirculation where autoregulation is vital for the maintenance of smooth and uninterrrupted blood flow. This review focuses on the interactions between retinal microvascular endothelial cells and their associated pericytes and examines the role of the endothelial cell and the pericyte in the pathogenesis of disease.
Resumo:
Clinical, pathological and experimental studies of radiation retinopathy confirm that the primary vascular event is endothelial cell loss and capillary closure. Pericytes are less susceptible, but typically atrophy as the capillaries become non-functional. The immediate effects of radiation reflect interphase and early mitotic death of injured endothelial cells, whereas later changes may be attributed to delayed mitotic death of compromised endothelial cells as they attempt division in the ordinary course of repair and replacement. Capillary occlusion leads to the formation of dilated capillary collaterals which may remain serviceable and competent for years. Microaneurysms develop in acellular and poorly supported capillaries, predominantly on the arterial side of the circulation and adjacent to regions of poorly perfused retina. Alterations in haemodynamics produce large telangiectatic-like channels which, typically develop a thick collagenous adventitia and may become fenestrated. Limited capillary regeneration occurs, usually evident as recanalisation of arterioles or venules by new capillaries. Vitreo-retinal neovascularisation may occur where retinal ischaemia is widespread. Radiation produces an exaggerated vasculopathy in patients with diabetes mellitus, and five month streptozotocin-induced diabetic rats develop a severe ischaemic retinopathy with vitreoretinal neovascularisation when exposed to 1500 cGy of radiation. Later photocoagulation is useful in containing or reversing microvascular incompetence and vasoproliferation in some patients with advanced radiation retinopathy.
Resumo:
The endocytosis of horseradish peroxidase (HRP) by the vascular cells of retinal and choroidal blood vessels was compared in immersion and perfusion fixed eyes from individual rats. The mechanisms of endocytosis of HRP appeared identical in both retinal and choroidal vessels. The bulk of internalised tracer occurred in macropinosomes 300-400 nm in diameter. Tracer was localised to a 20-30 nm layer on the internal aspect of the limiting membrane. This layer was coincident with the glycocalyx of the luminal plasma membrane as revealed by ruthenium redosmium tetroxide staining. Horseradish peroxidase was also internalised by a small scattered population of vesicles (100-130 nm in diameter). The size of these vesicles suggested that they may have arisen from clathrin coated regions of the plasma membrane. It is suggested that the endocytosis of HRP in retinal and choroidal vascular endothelium occurs as a function of plasma membrane recycling. Horseradish peroxidase may also be internalised as a 'contaminant' of the glycocalyx in coated pits involved in receptor mediated endocytosis. The smooth 80 nm plasmalemmal caveolae of the retinal and choroidal vascular endothelial cells did not appear to participate either in absorptive endocytosis or vesicular transport.
Resumo:
This paper challenges the hypothesis that the smooth 80 nm plasmalemmal caveolae found in abundance at the abluminal aspect of the endothelium in retinal blood vessels participate in a unidirectional vesicular transport mechanism. Evidence is presented which indicates that horseradish peroxidase, when introduced to the extracellular space of the retina via the vitreous body, may enter the intravascular compartment through junctional incompetence which occurs at or after enucleation of the eye. It is proposed that the plasmalemmal caveolae at the abluminal plasma membrane of endothelial cells in retinal blood vessels are static structures which facilitate the transport of small solutes and ions across the blood retinal barrier.
Resumo:
Cell loss and regeneration were investigated and compared in the retinal microvasculature of age- and sex-matched normal and streptozotocin diabetic rats. Selective pericyte loss in the diabetic rat was characterized by changes in the pericyte to endothelial cell ratio in retinal capillaries isolated for microscopy by the trypsin digest technique. A comparison of 3- and 9-month-old normal rats showed no significant change in the pericyte to endothelial cell ratio (1:2.7). In diabetic animals the ratio was reduced to 1:4.03, which was statistically significant (P less than .001). Premitotic retinal vascular cells in normal and diabetic rats were labelled with tritiated thymidine and the labelling indices calculated from cell counts of trypsin digest preparations. Methyl H3 thymidine was infused continuously over an eight-day period using osmotic mini pumps. The labelling index of endothelial cells (0.33%) in normal rats increased to 0.91% in diabetic animals (P less than .05). The labelling index of pericyte cells in normal animals (0.16%) did not increase significantly (P greater than .05) in diabetic animals (0.19%). A special stain was used to exclude labelled polymorphonuclear leukocytes from the cell counts.
Angiogenic potential of vitreous from proliferative diabetic retinopathy and eales' disease patients
Resumo:
Proliferative Diabetic Retinopathy (PDR) and Eales' Disease (ED) have different aetiologies although they share certain common clinical symptoms including pre-retinal neovascularization. Since there is a need to understand if the shared end-stage angiogenic pathology of PDR and ED is driven by common stimulating factors, we have studied the cytokines contained in vitreous from both patient groups and analyzed the angiogenic potential of these samples in vitro.
Material and MethodsVitreous samples from patients with PDR (n = 13) and ED (n = 5) were quantified for various cytokines using a cytokine biochip array and sandwich ELISA. An additional group of patients (n = 5) with macular hole (MH) was also studied for comparison. To determine the angiogenic potential of these vitreous samples, they were analyzed for their ability to induce tubulogenesis in human microvascular endothelial cells. Further, the effect of anti-VEGF (Ranibizumab) and anti-IL-6 antibodies were studied on vitreous-mediated vascular tube formation.
ResultsElevated levels of IL-6, IL-8, MCP-1 and VEGF were observed in vitreous of both PDR and ED when compared to MH. PDR and ED vitreous induced greater levels of endothelial cell tube formation compared to controls without vitreous (P<0.05). When VEGF in vitreous was neutralized by clinically-relevant concentrations of Ranibizumab, tube length was reduced significantly in 5 of 6 PDR and 3 of 5 ED samples. Moreover, when treated with IL-6 neutralizing antibody, apparent reduction (71.4%) was observed in PDR vitreous samples.
ConclusionsWe have demonstrated that vitreous specimens from PDR and ED patients share common elevations of pro-inflammatory and pro-angiogenic cytokines. This suggests that common cytokine profiles link these two conditions.
Figures 12
Resumo:
Aims: Recent ability to derive endothelial cells (ECs) from induced pluripotent stem (iPS) cells holds a great therapeutic potential for personalised medicine and stem cell therapy. We aimed that better understanding of the complex molecular signals that are evoked during iPS cell differentiation towards ECs may allow specific targeting of their activities to enhance cell differentiation and promote tissue regeneration.
Methods and Results: In this study we have generated mouse iPS cells from fibroblasts using established protocol. When iPS cells were cultivated on type IV mouse collagen-coated dishes in differentiation medium, cell differentiation toward vascular lineages were observed. To study the molecular mechanisms of iPS cell differentiation, we found that miR-199b is involved in EC differentiation. A step-wise increase in expression of miR-199 was detected during EC differentiation. Notably, miR-199b targeted the Notch ligand JAG1, resulting in VEGF transcriptional activation and secretion through the transcription factor STAT3. Upon shRNA-mediated knockdown of the Notch ligand JAG1, the regulatory effect of miR-199b was ablated and there was robust induction of STAT3 and VEGF during EC differentiation. Knockdown of JAG1 also inhibited miR-199b-mediated inhibition of iPS cell differentiation towards SMCs. Using the in vitro tube formation assay and implanted Matrigel plugs, in vivo, miR-199b also regulated VEGF expression and angiogenesis.
Conclusions: This study indicates a novel role for miR-199b as a regulator of the phenotypic switch during vascular cell differentiation derived from iPS cells by regulating critical signaling angiogenic responses.
Resumo:
Metastasis is the predominant cause of death from cancer yet we have few biomarkers to predict patients at increased risk of metastasis and are unable to effectively treat disseminated disease. Analysis of 448 primary breast tumors determined that expression of the hylauronan receptor CD44 associated with high grade (p = 0.046), ER- (p = 0.001) and PR-negative tumors (p = 0.029), and correlated with increased distant recurrence and reduced disease-free survival in patients with lymph-node positive or large tumors. To determine its functional role in distant metastasis, CD44 was knocked-down in MDA-MB-231 cells using two independent shRNA sequences. Loss of CD44 attenuated tumor cell adhesion to endothelial cells and reduced cell invasion but did not affect proliferation in vitro. To verify the importance of CD44 to post-intravasation events, tumor formation was assessed by quantitative in vivo imaging and post-mortem tissue analysis following an intra-cardiac injection of transfected cells. CD44 knock-down increased survival and decreased overall tumor burden at multiple sites, including the skeleton in vivo. We conclude that elevated CD44 expression on tumour cells within the systemic circulation increases the efficiency of post-intravasation events and distant metastasis in vivo, consistent with its association with increased distant recurrence and reduced disease-free survival in patients.
Resumo:
OBJECTIVE: The antitumor effects of FK506-binding protein like (FKBPL) and its extracellular role in angiogenesis are well characterized; however, its role in physiological/developmental angiogenesis and the effect of FKBPL ablation has not been evaluated. This is important as effects of some angiogenic proteins are dosage dependent. Here we evaluate the regulation of FKBPL secretion under angiogenic stimuli, as well as the effect of FKBPL ablation in angiogenesis using mouse and zebrafish models.
APPROACH AND RESULTS: FKBPL is secreted maximally by human microvascular endothelial cells and fibroblasts, and this was specifically downregulated by proangiogenic hypoxic signals, but not by the angiogenic cytokines, VEGF or IL8. FKBPL's critical role in angiogenesis was supported by our inability to generate an Fkbpl knockout mouse, with embryonic lethality occurring before E8.5. However, whilst Fkbpl heterozygotic embryos showed some vasculature irregularities, the mice developed normally. In murine angiogenesis models, including the ex vivo aortic ring assay, in vivo sponge assay, and tumor growth assay, Fkbpl(+/-) mice exhibited increased sprouting, enhanced vessel recruitment, and faster tumor growth, respectively, supporting the antiangiogenic function of FKBPL. In zebrafish, knockdown of zFkbpl using morpholinos disrupted the vasculature, and the phenotype was rescued with hFKBPL. Interestingly, this vessel disruption was ineffective when zcd44 was knocked-down, supporting the dependency of zFkbpl on zCd44 in zebrafish.
CONCLUSIONS: FKBPL is an important regulator of angiogenesis, having an essential role in murine and zebrafish blood vessel development. Mouse models of angiogenesis demonstrated a proangiogenic phenotype in Fkbpl heterozygotes.
Resumo:
Retinal endothelial cell dysfunction is believed to play a key role in the etiology and pathogenesis of diabetic retinopathy. Numerous studies have shown that TRPV4 channels are critically involved in maintaining normal endothelial cell function. In the current paper, we demonstrate that TRPV4 is functionally expressed in the endothelium of the retinal microcirculation and that both channel expression and activity is downregulated by hyperglycaemia. Quantitative PCR and immunostaining demonstrated molecular expression of TRPV4 in cultured bovine retinal microvascular endothelial cells (RMECs). Functional TRPV4 activity was assessed in cultured RMECs from endothelial Ca2+-responses recorded using fura-2 microfluorimetry and electrophysiological recordings of membrane currents. The TRPV4 agonist 4α-phorbol 12,13-didecanoate (4-αPDD) increased [Ca2+]i in RMECs and this response was largely abolished using siRNA targeted against TRPV4. These Ca2+-signals were completely inhibited by removal of extracellular Ca2+, confirming their dependence on influx of extracellular Ca2+. The 4-αPDD Ca2+-response recorded in the presence of cyclopiazonic acid (CPA), which depletes the intracellular stores preventing any signal amplification through store release, was used as a measure of Ca2+-influx across the cell membrane. This response was blocked by HC067047, a TRPV4 antagonist. Under voltage clamp conditions, the TRPV4 agonist GSK1016790A stimulated a membrane current, which was again inhibited by HC067047. Following incubation with 25mM D-glucose TRPV4 expression was reduced in comparison with RMECs cultured under control conditions, as were 4αPDD-induced Ca2+-responses in the presence of CPA and ion currents evoked by GSK1016790A. Molecular expression of TRPV4 in the retinal vascular endothelium of 3 months' streptozotocin-induced diabetic rats was also reduced in comparison with that in age-matched controls. We conclude that hyperglycaemia and diabetes reduce the molecular and functional expression of TRPV4 channels in retinal microvascular endothelial cells. These changes may contribute to diabetes induced endothelial dysfunction and retinopathy.
Resumo:
CONTEXT: Fetal ovarian development and primordial follicle formation underpin future female fertility. Prokineticin (PROK) ligands regulate cell survival, proliferation and angiogenesis in adult reproductive tissues including the ovary. However, their expression and function during fetal ovarian development remains unclear.
OBJECTIVE: To investigate expression and localization of the PROK ligands, receptors and their downstream transcriptional targets in the human fetal ovary.
SETTING: This study was conducted at the University of Edinburgh.
PARTICIPANTS: Ovaries were collected from 37 morphologically normal human fetuses.
DESIGN AND MAIN OUTCOME MEASURES: mRNA and protein expression of PROK ligands and receptors was determined in human fetal ovaries using qRT-PCR, immunoblotting and immunohistochemistry. Functional studies were performed using a human germ tumour cell line (TCam-2) stably transfected with PROKR1.
RESULTS: Expression of PROK1 and PROKR1 was significantly higher in mid-gestation ovaries (17-20 weeks) than at earlier gestations (8-11 and 14-16 weeks). PROK2 significantly increased across the gestations examined. PROKR2 expression remained unchanged. PROK ligand and receptor proteins were predominantly localised to germ cells (including oocytes within primordial follicles) and endothelial cells, indicating these cell types to be the targets of PROK signalling in the human fetal ovary. PROK1 treatment of a germ cell line stably-expressing PROKR1 resulted in ERK phosphorylation, and elevated COX2 expression.
CONCLUSIONS: Developmental changes in expression and regulation of COX2 and pERK by PROK1 suggest that PROK ligands may be novel regulators of germ cell development in the human fetal ovary, interacting within a network of growth and survival factors prior to primordial follicle formation.
Resumo:
Clear cell renal cell carcinoma (ccRCC), a tubular epithelial cell (TEC) malignancy, frequently secretes tumor necrosis factor (TNF). TNF signals via two distinct receptors (TNFRs). TNFR1, expressed in normal kidney primarily on endothelial cells, activates apoptotic signaling kinase 1 and nuclear factor-kappaB (NF-kappaB) and induces cell death, whereas TNFR2, inducibly expressed on endothelial cells and on TECs by injury, activates endothelial/epithelial tyrosine kinase (Etk), which trans-activates vascular endothelial growth factor receptor 2 (VEGFR2) to promote cell proliferation. We investigated TNFR expression in clinical samples and function in short-term organ cultures of ccRCC tissue treated with wild-type TNF or specific muteins selective for TNFR1 (R1-TNF) or TNFR2 (R2-TNF). There is a significant increase in TNFR2 but not TNFR1 expression on malignant TECs that correlates with increasing malignant grade. In ccRCC organ cultures, R1-TNF increases TNFR1, activates apoptotic signaling kinase and NF-kappaB, and promotes apoptosis in malignant TECs. R2-TNF increases TNFR2, activates NF-kappaB, Etk, and VEGFR2 and increases entry into the cell cycle. Wild-type TNF induces both sets of responses. R2-TNF actions are blocked by pretreatment with a VEGFR2 kinase inhibitor. We conclude that TNF, acting through TNFR2, is an autocrine growth factor for ccRCC acting via Etk-VEGFR2 cross-talk, insights that may provide a more effective therapeutic approach to this disease.
Resumo:
PURPOSE: To review key clinical issues underlying the assessment of in vivo efficacy when using antiangiogenic therapies for cancer treatment.
METHODS: Literature relevant to use of antiangiogenic therapies in cancer was reviewed, with particular emphasis on the assessment of in vivo efficacy of these agents, as well as additional angiogenic factors that could play a role in escape from angiogenesis inhibition.
RESULTS: In order to grow and metastasize, tumors need to continually acquire new blood supplies; therefore, therapeutic inhibition of angiogenesis has become a component of anticancer treatment for many tumor types. Bevacizumab, a humanized monoclonal antibody directed at vascular endothelial growth factor A (VEGF-A), has shown activity in combination with chemotherapy in metastatic colorectal cancer. Nevertheless, the use of antiangiogenic therapies remains suboptimal; specifically, optimal dose, duration of therapy, and combination of agents remain unknown. Also, at present, it is not possible to determine which patients are most likely to respond to a given form of antiangiogenic therapy. There has been increased recognition of alternative pathways possibly associated with disease progression in patients undergoing antiangiogenic therapy targeted at VEGF-A. Multiligand-targeted antiangiogenic therapies, such as ziv-aflibercept (formerly known as aflibercept, VEGF Trap), are currently undergoing clinical evaluation. Ziv-aflibercept forms monomeric complexes with VEGF-A, VEGF-B, and PlGF, which have a long half-life, allowing optimization of ziv-aflibercept doses and angiogenic blockage.
CONCLUSIONS: Although antiangiogenic therapies have increased treatment options for cancer patients, their use is limited by a lack of established and standardized methodology to evaluate their efficacy in vivo. Circulating endothelial cells, hypertension, and several molecular and imaging-based markers have potential for use as biomarkers in these patients and may better define appropriate patient populations.
Resumo:
Substance P (SP) is a member of the structurally related family of neuropeptides known as the tachykinins. In addition to neurotransmitter roles, the tachykinins are also known to modulate local inflammation which depends on signalling between the neuropeptide molecules and target cells and tissues. SP mediates its effects through a specific receptor, known as the substance P receptor or the neurokinin 1 (NK-1) receptor. The NK-1 receptor is a G-protein associated integral membrane protein and although it has been studied in a wide range of tissues, to date there has been no published data on the localisation of the NK-1 receptor in human gingival tissue. Objective: The aim of this study was to examine the distribution of the NK-1 receptor in human gingival tissue using immunocytochemistry. Method: Gingival tissue was obtained from patients undergoing periodontal surgery. Tissue was fixed in paraformaldehyde and embedded in wax for sectioning. Sections were dewaxed in xylene and then rehydrated in alcohols and phosphate buffered saline. Rehydrated sections were probed with rabbit polyclonal antibody to human NK-1 receptor which was subsequently detected using anti-rabbit horseradish peroxidase conjugate and diaminobenzidine as substrate. Results: Immunocytochemistry revealed that the NK-1 receptor was distributed along nerve fibres and blood vessel endothelial cells, suggesting these areas are main targets for the actions of SP via the NK-1 receptor. Conclusion: This is the first immunocytochemical report of NK-1 receptors in human gingival tissue and provides evidence for possible NK-1 mediated biological effects of SP in human gingival tissue from periodontitis patients.