166 resultados para Ablation Techniques
EVALUATION OF A FOAM BUFFER TARGET DESIGN FOR SPATIALLY UNIFORM ABLATION OF LASER-IRRADIATED PLASMAS
Resumo:
Experimental observations are presented demonstrating that the use of a gold-coated foam layer on the surface of a laser-driven target substantially reduces its hydrodynamic breakup during the acceleration phase. The data suggest that this results from enhanced thermal smoothing during the early-time imprint stage of the interaction. The target's kinetic energy and the level of parametric instability growth are shown to remain essentially unchanged from that of a conventionally driven target.
Resumo:
The optical plume emissions produced on excimer laser ablation of a YBa2Cu3O7 target are reported and identified with the various atomic, ionic, and molecular species present. The spatial and temporal distribution of these emissions were studied as a function of the laser fluence and oxygen pressure. At the laser fluences used (4-6 J/cm(2)) some target material is ablated or evaporated directly in molecular form. In addition efficient formation of molecular oxides is observed at the contact front of the expanding plume with the surrounding oxygen atmosphere. The intensity and spatial distribution of oxide emission in the visible plume therefore provides a sensitive diagnostic for optimization of substrate location and deposition conditions.
Resumo:
YBaCuO films with (001) orientation have been deposited on MgO by laser ablation at 248 and 193 nm wavelengths. Transitions to zero resistance at 87 K and 90 K have been reproducibly achieved in the respective cases. Optical spectroscopic studies of the plume show the importance of molecular species in the ablation if good superconducting films are to be formed. The substrate position in the plume and substrate temperature are important in determining film quality. The influence of oxygen gas pressure can be significant. SEM studies show the occurrence of second-phase outcrops with a needle-like morphology aligned over the whole area of the film along two mutually perpendicular directions on the film surface. Film orientation is determined by XRD and R against T is measured down to 80 K in a hydrogen exchange gas cryostat. Characterization studies of device-related multilayer YBaCuO/PrBaCuO structures by XRD are presented.
Resumo:
The optimization of interrelated deposition parameters during deposition of in situ YBa2Cu3O7 thin films on MgO substrates by KrF laser ablation was systematically studied in a single experimental chamber. The optimum condition was found to be a substrate temperature of 720-degrees-C and a target-substrate distance of 5 cm in an oxygen partial pressure of 100 mTorr. These conditions produced films with T(c) = 87 K. The presence of YO in the plasma plume was found to be important in producing good quality films. The films were characterized by resistance-temperature measurements, energy dispersive x-ray analyses, scanning electron microscopy, and x-ray-diffraction measurements, and the physical reasons underlying film quality degradation at parameter values away from optimal are discussed.