243 resultados para ALPHA-SMOOTH MUSCLE ACTIN
Resumo:
Stem cells have the ability to differentiate into a variety of cells to replace dead cells or to repair tissue. Recently, accumulating evidence indicates that mechanical forces, cytokines and other factors can influence stem cell differentiation into vascular smooth muscle cells (SMCs). In developmental process, SMCs originate from several sources, which show a great heterogenicity in different vessel walls. In adult vessels, SMCs display a less proliferative nature, but are altered in response to risk factors for atherosclerosis. Traditional view on SMC origins in atherosclerotic lesions is challenged by the recent findings that stem cells and smooth muscle progenitors contribute to the development of atherosclerotic lesions. Vascular progenitor cells circulating in human blood and the presence of adventitia in animals are recent discoveries, but the source of these cells is still unknown. The present review gives an update on the progress of stem cell and SMC research in atherosclerosis, and discusses possible mechanisms of stem/progenitor cell differentiation that contribute to the disease process.
Resumo:
Background and Purpose: The aim of the study was to determine whether KCNQ channels are functionally expressed in bladder smooth muscle cells (SMC) and to investigate their physiological significance in bladder contractility.
Experimental Approach: KCNQ channels were examined at the genetic, protein, cellular and tissue level in guinea pig bladder smooth muscle using RT-PCR, immunofluorescence, patch-clamp electrophysiology, calcium imaging, detrusor strip myography, and a panel of KCNQ activators and inhibitors.
Key Results: KCNQ subtypes 1-5 are expressed in bladder detrusor smooth muscle. Detrusor strips typically displayed TTX-insensitive myogenic spontaneous contractions that were increased in amplitude by the KCNQ channel inhibitors XE991, linopirdine or chromanol 293B. Contractility was inhibited by the KCNQ channel activators flupirtine or meclofenamic acid (MFA). The frequency of Ca2+-oscillations in SMC contained within bladder tissue sheets was increased by XE991. Outward currents in dispersed bladder SMC, recorded under conditions where BK and KATP currents were minimal, were significantly reduced by XE991, linopirdine, or chromanol, and enhanced by flupirtine or MFA. XE991 depolarized the cell membrane and could evoke transient depolarizations in quiescent cells. Flupirtine (20M) hyperpolarized the cell membrane with a simultaneous cessation of any spontaneous electrical activity.
Conclusions and Implications: These novel findings reveal the role of KCNQ currents in the regulation of the resting membrane potential of detrusor SMC and their important physiological function in the control of spontaneous contractility in the guinea pig bladder.
Resumo:
A high concentration of circulating low-density lipoproteins (LDL) is a major risk factor for atherosclerosis. Native LDL and LDL modified by glycation and/or oxidation are increased in diabetic individuals. LDL directly stimulate vascular smooth muscle cell (VSMC) proliferation; however, the mechanisms remain undefined. The extracellular signal-regulated kinase (ERK) pathway mediates changes in cell function and growth. Therefore, we examined the cellular effects of native and modified LDL on ERK phosphorylation in VSMC. Addition of native, mildly modified (oxidized, glycated, glycoxidized) and highly modified (highly oxidized, highly glycoxidized) LDL at 25 microg/ml to rat VSMC for 5 min induced a fivefold increase in ERK phosphorylation. To elucidate the signal transduction pathway by which LDL phosphorylate ERK, we examined the roles of the Ca(2+)/calmodulin pathway, protein kinase C (PKC), src kinase, and mitogen-activated protein kinase kinase (MEK). Treatment of VSMC with the intracellular Ca(2+) chelator EGTA-AM (50 micromol/l) significantly increased ERK phosphorylation induced by native and mildly modified LDL, whereas chelation of extracellular Ca(2+) by EGTA (3 mmol/l) significantly reduced LDL-induced ERK phosphorylation. The calmodulin inhibitor N-(6-aminohexyl)-1-naphthalenesulfonamide (40 micromol/l) significantly decreased ERK phosphorylation induced by all types of LDL. Downregulation of PKC with phorbol myristate acetate (5 micromol/l) markedly reduced LDL-induced ERK phosphorylation. Pretreatment of VSMC with a cell-permeable MEK inhibitor (PD-98059, 40 micromol/l) significantly decreased ERK phosphorylation in response to native and modified LDL. These findings indicate that native and mildly and highly modified LDL utilize similar signaling pathways to phosphorylate ERK and implicate a role for Ca(2+)/calmodulin, PKC, and MEK. These results suggest a potential link between modified LDL, vascular function, and the development of atherosclerosis in diabetes.
Resumo:
Sirolimus-eluting stent therapy has achieved considerable success in overcoming coronary artery restenosis. However, there remain a large number of patients presenting with restenosis after the treatment, and the source of its persistence remains unclarified. Although recent evidence supports the contribution of vascular stem/progenitor cells in restenosis formation, their functional and molecular responses to sirolimus are largely unknown.
Resumo:
This study was undertaken to further characterise the fine structural changes occurring in the retinal circulation in early diabetes. The eyes of eight alloxan/streptozotocin and three spontaneously diabetic dogs were examined by trypsin digest and electron microscopy after durations of diabetes of between 1 and 7 years. Basement membrane (BM) thickening in the retinal capillaries was the only obvious fine structural change identified during the first 3 years of diabetes and was established within 1 year of induction. Widespread pericyte loss was noted after 4 years of diabetes and was paralleled by loss of smooth muscle (SM) cells, in the retinal arterioles. SM cell loss was most obvious in the smaller arterioles of the central retina. No microaneurysms were noted in the experimental diabetic dogs with up to 5 years' duration of diabetes but were widespread in a spontaneously diabetic animal at 7 years. This study has shown that SM cell loss, a hitherto unrecognised feature of diabetic microangiopathy, accompanies pericyte loss in the retinal circulation of diabetic dogs.
Resumo:
Amphibian skin, and particularly that of south/Central American phyllomedusine frogs, is supposed to be "a huge factory and store house of a variety of active peptides". The 40 amino acid amphibian CRF-like peptide, sauvagine, is a prototype member of a unique family of these Phyllomedusa skin peptides. In this study, we describe for the first time the structure of a mature novel peptide from the skin secretion of the South American orange-legged leaf frog, Phyllomedusa hypochondrialis, which belongs to the amphibian CRF/sauvagine family. Partial amino acid sequence from the N-terminal was obtained by automated Edman degradation with the following structure: pGlu-GPPISIDLNMELLRNMIEI-. The biosynthetic precursor of this novel sauvagine peptide, consisted of 85 amino acid residues and was deduced from cDNA library constructed from the same skin secretion. Compared with the standard sauvagine from the frog, Phyllomedusa sauvagei, this novel peptide was found to exert similar contraction effects on isolated guinea-pig colon and rat urinary bladder smooth muscle preparations.