145 resultados para 090702 Environmental Engineering Modelling


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natural ventilation is a sustainable solution to maintaining healthy and comfortable environmental conditions in buildings. However, the effective design, construction and operation of naturally ventilated buildings require a good understanding of complex airflow patterns caused by the buoyancy and wind effects.The work presented in this article employed a 3D computational fluid dynamics (CFD) analysis in order to investigate environmental conditions and thermal comfort of the occupants of a highly-glazed naturally ventilated meeting room. This analysis was facilitated by the real-time field measurements performed in an operating building, and previously developed formal calibration methodology for reliable CFD models of indoor environments. Since, creating an accurate CFD model of an occupied space in a real-life scenario requires a high level of CFD expertise, trusted experimental data and an ability to interpret model input parameters; the calibration methodology guided towards a robust and reliable CFD model of the indoor environment. This calibrated CFD model was then used to investigate indoor environmental conditions and to evaluate thermal comfort indices for the occupants of the room. Thermal comfort expresses occupants' satisfaction with thermal environment in buildings by defining the range of indoor thermal environmental conditions acceptable to a majority of occupants. In this study, the thermal comfort analysis, supported by both field measurements and CFD simulation results, confirmed a satisfactory and optimal room operation in terms of thermal environment for the investigated real-life scenario. © 2013 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Semiconductor photocatalysis has been applied to the remediation of an extensive range of chemical pollutants in water over the past 30 years. The application of this versatile technology for removal of micro-organisms and cyanotoxins has recently become an area that has also been the subject of extensive research particularly over the past decade. This paper considers recent research in the application of semiconductor photocatalysis for the treatment of water contaminated with pathogenic micro-organisms and cyanotoxins. The basic processes involved in photocatalysis are described and examples of recent research into the use of photocatalysis for the removal of a range of microorganisms are detailed. The paper concludes with a review of the key research on the application of this process for the removal of chemical metabolites generated from cyanobacteria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A considerable number of investigations have started to elucidate the essential roles biological agents play in the biodeterioration of stone. Chemical biocides are becoming increasingly banned because of the environmental and health hazards associated with these toxic substances. The present study reports the photodynamic effect of Methylene Blue (MB) and Nuclear Fast Red (NFR) in the presence of hydrogen peroxide (H2O2) on the destruction of the algae Chlorella vulgaris (C. vulgaris) under irradiation with visible light. Illumination of C. vulgaris in the presence of MB or NFR combined with H2O2 results in the decomposition of both the algal species and the photosensitizer. The photodynamic effect was investigated under aerobic and anaerobic conditions. Differences in mechanism type are reported and are dependent on both the presence and the absence of oxygen. The behavior of each photosensitizer leads to a Type II mechanism and a Type I/Type II combination for MB and NFR, respectively, being concluded. This novel combination could be effective for the remediation of biofilm-colonized stone surfaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microcystins (cyclic heptapeptides) are produced by a number of freshwater cyanobacteria and cause concern in potable water supplies due to their acute and chronic toxicity. The present study reports the structural characterization of the degradation products of the photocatalytic oxidation of microcystin-LR, so aiding the mechanistic understanding of this process. TiO2 photocatalysis is a promising technology for removal of these toxins from drinking water. However, before it can be adopted in any practical application it is necessary to have a sufficient knowledge of degradation byproducts and their potential toxicity. Liquid chromatography-mass spectrometry analysis demonstrated that the major destruction pathway of microcystin appears to be initiated via three mechanisms: UV irradiation, hydroxyl radical attack, and oxidation. UV irradiation caused geometrical isomerization of microcystin converting the (4E), (6E) of the Adda configuration to (4E), 6(Z) or 4(Z), 6(E). Hydroxyl radical attack on the conjugated diene structure of Adda moiety produced dihyroxylated products. Further oxidation cleaved the hydroxylated 4-5 and/or 6-7 bond of Adda to form aldehyde or ketone peptide residues, which then were oxidized into the corresponding carboxylic acids. Photocatalysis also hydrolyzed the peptide bond on the ring structure of microcystin to form linear structures although this appeared to be a minor pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

TiO2 photocatalysis has been used to destroy microcystin-LR in aqueous solution. The destruction of this toxin was monitored by HPLC, and the disappearance was accompanied by the appearance of seven UV detectable compounds. Spectral analysis revealed that some of these compounds retained spectra similar to the parent compound suggesting that the Adda moiety, thought to be responsible for the characteristic spectrum, remained intact whereas the spectra of some of the other products was more radically altered. Six of the seven observed reaction products did not appear to undergo further degradation during prolonged photocatalysis (100 min). The degree to which microcystin-LR was mineralized by photocatalytic oxidation was determined. Results indicated that less than 10% mineralization occurred. Mass spectral analysis of the photocatalyzed microcystin-LR allowed tentative characterization of the reaction process and products. Reduction in toxicity due to the photocatalytic oxidation was evaluated using an invertebrate bioassay, which demonstrated that the disappearance of microcystin-LR was paralleled by a reduction in toxicity. These findings suggest that photocatalytic destruction of microcystins may be a suitable method for the removal of these potentially hazardous compounds from drinking water.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interaction of organic xenobiotics with soil water-soluble humic material (WSHM) may influence their environmental fate and bioavailability. We utilized bacterial assays (lux-based toxicity and mineralization by Burkholderia sp. RASC) to assess temporal changes in the bioavailability of [14C]-2,4-dichlorophenol (2,4-DCP) in soil water extracts (29.5 μg mL-1 2,4-DCP; 840.2 μg mL-1 organic carbon). HPLC determined and bioavailable concentrations were compared. Gel permeation chromatography (GPC) was used to confirm the association of a fraction (>50%) of [14C]-2,4-DCP with WSHM. Subtle differences in parameters describing 2,4-DCP mineralization curves were recorded for different soil-2,4-DCP contact times. Problems regarding the interpretation of mineralization data when assessing the bioavailability of toxic compounds are discussed. The lux-bioassay revealed a time-dependent reduction in 2,4-DCP bioavailability: after 7 d, less than 20% was bioavailable. However, GPC showed no quantitative difference in the amount of WSHM-associated 2,4-DCP over this time. These data suggest qualitative changes in the nature of the 2,4-DCP-WSHM association and that associated 2,4-DCP may exert a toxic effect. Although GPC distinguished between free- and WSHM-associated 2,4-DCP, it did not resolve the temporal shift in bioavailability revealed by the lux biosensor. These results stress that assessment of risk posed by chemicals must be considered using appropriate biological assays.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fluxes of HCH isomers α- and γ-HCH dynamics were determined in four industrial U.K. rivers feeding the North Sea. Sampling was conducted weekly basis over a 2-year period. This was complemented by discrete studies of events where two hourly sampling periods were used to investigate the fine time scale dynamics of fluxes. Two intensively industrialized rivers had average isomer concentrations of ~20 ng L-1 for both isomers, while average concentrations in the two less industrialized rivers ranged between 1.5 and 5.0 ng L-1. α-HCH concentrations showed no strong temporal patterns on any river, which contrasts with γ-HCH levels that increased considerably during late summer/early autumn following sustained periods of low river flow. Sampling during high river flow events on rivers with differing HCH pollution histories both showed the same dynamics in HCH isomer concentrations. γ-HCH concentrations decreased 4-fold during events while α-HCH-concentrations stayed constant. The increases in γ-HCH concentrations under low flow conditions and the rapid dilution of this isomer during events indicate that γ-HCH has current inputs to these river systems. It was calculated that these four rivers export 30.8 kg yr-1 of γ-HCH and 14.8 kg yr-1 of α-HCH to the North Sea.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biodegradation of the model pollutant, 2,4-dichlorophenol (2,4-DCP) by Burkholderia sp. RASC c2, in contaminated soil was assessed by combining chemical analysis with a toxicity test using Escherichia coli HB101 pUCD607. E. coli HB101 pUCD607 was previously marked with luxCDABE genes, encoding bacterial bioluminescence and was used as an alternative to Microtox. Mineralization of 14C-2,4-DCP (196.2 μg g-1 dry wt) in soil occurred rapidly after a 24 h lag. Correspondingly, 2,4-DCP concentrations in soil and soil water extracts decreased with time and concentrations in the latter were at background levels (<0.12 μg mL-1) after day 2. Toxicity of soil water extracts to the lux-based biosensor also decreased with time. Mean light output of E. coli was stimulated by ~1.5 X control values in soil water extracts when concentrations of 2,4-DCP were approaching the limit of detection by HPLC but returned to values equivalent to those of controls when soil water 2,4-DCP concentrations were below the detection limit. No mineralization or microbial growth was detected in noninoculated microcosms. 2,4-DCP concentration in sterile controls decreased significantly with time as did toxicity to E. coli Lux-based E. coli was a sensitive biosensor of 2,4-DCP toxicity during biodegradation and results complemented chemical analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work was to study the possible deactivation effects of biogas trace ammonia concentrations on methanation catalysts. It was found that small amounts of ammonia led to a slight decrease in the catalyst activity. A decrease in the catalyst deactivation by carbon formation was also observed, with ammonia absorbed on the active catalyst sites. This was via a suppression of the carbon formation and deposition on the catalyst, since it requires a higher number of active sites than for the methanation of carbon oxides. From the paper findings, no special pretreatment for ammonia removal from the biogas fed to a methanation process is required.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Opioid peptide neurotransmitters stimulate feeding and are involved in mediating the rewarding aspects of feeding, as well as in energy regulation in the brain. The effects of sucrose diets on opioid peptide gene expression were measured in the arcuate nucleus (ARC) and the paraventricular nucleus (PVN) of the rat. Rats were fed a cornstarch-based diet or a low (16.7%), medium (33.4%), or high (50%) sucrose containing diet for 7 days. Analyses of the ARC and PVN demonstrated that sucrose in the diet had no effect on mRNA levels of opioid peptides. The lack of an opioid response in the ARC and PVN suggests that opioids in the ARC and PVN are involved in energy regulation rather than in mediating hedonic aspects of feeding.