148 resultados para wear testing
Resumo:
The electroless nickel composite (ENC) with various silicon carbide contents was deposited onto aluminium alloy (LM24) substrate. The wear behaviour and the microhardness of the composite coating samples were investigated and compared with particles free and aluminium substrate samples using micro-scale abrasion tester and microhardness tester respectively. The wear scar marks and wear volume were analysed by optical microscope. The wear tracks were further studied using scanning electron microscopy (SEM). The embedded particles were found to get pressed into the matrix which helps resisting further wearing process for composite samples. However, random orientation of microcuts and microfallow were seen for ENC sample but more uniform wearing was observed for EN sample. The composite coating with low content of SiC was worn minimum. Early penetration into the substrate was seen for samples with higher SiC content. Microhardness was improved after heat treatment for all the samples containing various SiC content. Under dry sliding condition, inclusion of particles in the matrix did not improve the wearing resistance performance in as-deposited state. The wearing worsened as the content of the particles increased generally. However, on heat treatment, the composite coatings exhibited improved wear resistance and the best result was obtained from the one with low particle contents.
Resumo:
The ageing behaviour of ultra-high molecular weight polyethylene (UHMWPE) has been studied following gamma irradiation (25 or 40 kGy) in air. Accelerated ageing procedures used elevated temperature (70°C) and/or pressurised oxygen (5 bar). Shelf-aged UHMWPE was also studied. The variation in surface density and mechanical properties were determined following the various sterilisation and ageing treatments. Microabrasive wear testing was also performed. Wear rates were found to correlate well with stress at break for sterilised and aged UHMWPE but not with elongation to failure. It is proposed that the wear mechanism is fracture dominated and occurs following some disentanglement of the polymer chains. Wear also depends upon embrittlement of the surface layer due to its processing and ageing. Elongation to failure in a tensile test is not a good measure of this embrittlement whereas the microabrasion test provides more surface sensitive information concerning this property.
Resumo:
With a new test facility, we have investigated fretting fatigue properties of Ti-1023 titanium alloy at different contact pressure. Both fatigue fracture and fretting scar were analyzed by scanning electron microscopy (SEM). Moreover, the depth of crack initiation area in fatigue fracture has been analyzed quantitatively, to investigate the relationship between the depth of crack initiation area and the fretting fatigue strength. The changing trends of the depth of crack initiation area and fretting fatigue strength with the increase of contact pressure show obvious opposite correlations. The depth of crack initiation area increases rapidly with the increase of contact pressure at low contact pressure (smaller than 10 MPa), and the fretting fatigue strength drops rapidly. At the contact pressure of 10–45 MPa, both the depth of crack initiation area and the fretting fatigue strength do not vary significantly. Contact pressure influences fatigue strength through influencing the initiation of fatigue crack. The main damage patterns are fatigue flake and plow.
Resumo:
The investigation is focused on the wear behaviour at elevated test temperature of composite Ni–P/SiC deposit, with varying concentration of the reinforcing SiC particles. The phase evolution measured by X-ray diffraction suggests slight crystallisation during wear testing at 200 °C. In coating without reinforcing particles, adhesive wear is accompanied by microcracks. The thermal heat generated and the cyclic loading could have induced sub-surface microcracks. Owing to the effective matrix-ceramics system in composite coatings, fine grooves, abrasive polishing and uniform wearing are observed. Reinforcing particles in the matrix hinder microcrack formation and significantly reduce the wear rate. Triboxidation is confirmed from energy dispersive X-ray spectrometry.
Resumo:
Silicon carbide (SiC) is a material of great technological interest for engineering applications concerning hostile environments where silicon-based components cannot work (beyond 623 K). Single point diamond turning (SPDT) has remained a superior and viable method to harness process efficiency and freeform shapes on this harder material. However, it is extremely difficult to machine this ceramic consistently in the ductile regime due to sudden and rapid tool wear. It thus becomes non trivial to develop an accurate understanding of tool wear mechanism during SPDT of SiC in order to identify measures to suppress wear to minimize operational cost.
In this paper, molecular dynamics (MD) simulation has been deployed with a realistic analytical bond order potential (ABOP) formalism based potential energy function to understand tool wear mechanism during single point diamond turning of SiC. The most significant result was obtained using the radial distribution function which suggests graphitization of diamond tool during the machining process. This phenomenon occurs due to the abrasive processes between these two ultra hard materials. The abrasive action results in locally high temperature which compounds with the massive cutting forces leading to sp3–sp2 order–disorder transition of diamond tool. This represents the root cause of tool wear during SPDT operation of cubic SiC. Further testing led to the development of a novel method for quantitative assessment of the progression of diamond tool wear from MD simulations.
Resumo:
In this study, three different elastomers, namely hydrogenated nitrile butadiene rubber, fluoroelastomer and silicone, have been subjected to two different hard metallised coatings by ion implantation process. The three different elastomers are commonly used in various seal applications, where reduced wear and gas permeability are essential in maintaining seal performance and functionality. Samples of these rubbers have been coated with chromium coating in one set of tests. In the second set of tests, samples of elastomers have been coated with tungsten carbide coating being deposited on all the three different elastomers. Wear, gas permeability and mechanical behaviour of the coated samples were compared with each other and with the control uncoated elastomers. All the coated samples showed good reduction in gas permeability. With the use of metallised coatings, there has been improved resistance to wear in all the coated samples. Adhesion strength and effect of coating on the elastomer have been investigated by mechanical testing. Mechanical tests revealed good adhesion of metal coatings on all the rubber samples, and there was no detrimental effect on the mechanical properties after coating. © 2012 Institute of Materials, Minerals and Mining.
Resumo:
The environmental attractions of air-cycle refrigeration are considerable. Following a thermodynamic design analysis, an air-cycle demonstrator plant was constructed within the restricted physical envelope of an existing Thermo King SL200 trailer refrigeration unit. This unique plant operated satisfactorily, delivering sustainable cooling for refrigerated trailers using a completely natural and safe working fluid. The full load capacity of the air-cycle unit at -20 °C was 7,8 kW, 8% greater than the equivalent vapour-cycle unit, but the fuel consumption of the air-cycle plant was excessively high. However, at part load operation the disparity in fuel consumption dropped from approximately 200% to around 80%. The components used in the air-cycle demonstrator were not optimised and considerable potential exists for efficiency improvements, possibly to the point where the air-cycle system could rival the efficiency of the standard vapour-cycle system at part-load operation, which represents the biggest proportion of operating time for most units.