86 resultados para volumetric shrinkage
Strength and drying shrinkage properties of concrete containing furnace bottom ash as fine aggregate
Resumo:
The speeds of sound u in, densities ? and refractive indices nD of some homologous series, such as n-alkyl ethanoates, n-alkyl propionates, methyl alkanoates, ethyl alkanoates, dialkyl malonates, and alkyl haloalkanoates, were measured in the temperature range from 298.15 to 333.15 K. Molar volume V, isentropic and isothermal compressibilities ?S and ?T, molar refraction Rm, Eykman’s constant Cm, molecular radius r, Rao’s molar function R, thermal expansion coefficient a, thermal pressure coefficient ?, and Flory’s characteristic parameters image, P*, V*, and T* have been calculated from the measured experimental data. Applicability of Rao theory and Flory–Patterson–Pandey (FPP) theory have been examined and discussed for these alkanoates.
Resumo:
The speeds of sound u, densities ? and refractive indices nD of homologous series of mono-, di-, and tri-alkylamines were measured in the temperature range from 298.15 to 328.15 K. Isentropic and isothermal compressibilities ?S and ?T, molar refraction Rm, Eykman’s constant Cm, Rao’s molar sound function R, thermal expansion coefficient a, thermal pressure coefficient ?, and reduction parameters P*, V*, and T* in frameworks of the ERAS model for associated amines and Flory model for tertiary amines have been calculated from the measured experimental data. Applicability of the Rao theory and the ERAS and Flory models have been examined and discussed for the alkyl amines.
Resumo:
The experimental measurements of the speed of sound and density of aqueous solutions of imidazolium based ionic liquids (IL) in the concentration range of 0.05 mol · kg-1 to 0.5 mol · kg-1 at T = 298.15 K are reported. The data are used to obtain the isentropic compressibility (ßS) of solutions. The apparent molar volume (phiV) and compressibility (phiKS) of ILs are evaluated at different concentrations. The data of limiting partial molar volume and compressibility of IL and their concentration variation are examined to evaluate the effect due to IL–water and IL–IL interactions. The results have been discussed in terms of hydrophobic hydration, hydrophobic interactions, and water structural changes in aqueous medium.
Resumo:
This paper proposes a novel image denoising technique based on the normal inverse Gaussian (NIG) density model using an extended non-negative sparse coding (NNSC) algorithm proposed by us. This algorithm can converge to feature basis vectors, which behave in the locality and orientation in spatial and frequency domain. Here, we demonstrate that the NIG density provides a very good fitness to the non-negative sparse data. In the denoising process, by exploiting a NIG-based maximum a posteriori estimator (MAP) of an image corrupted by additive Gaussian noise, the noise can be reduced successfully. This shrinkage technique, also referred to as the NNSC shrinkage technique, is self-adaptive to the statistical properties of image data. This denoising method is evaluated by values of the normalized signal to noise rate (SNR). Experimental results show that the NNSC shrinkage approach is indeed efficient and effective in denoising. Otherwise, we also compare the effectiveness of the NNSC shrinkage method with methods of standard sparse coding shrinkage, wavelet-based shrinkage and the Wiener filter. The simulation results show that our method outperforms the three kinds of denoising approaches mentioned above.
Resumo:
The prediction of molar volumes and densities of several ionic liquids has been achieved using a group contribution model as a function of temperature between (273 and 423) K at atmospheric pressure. It was observed that the calculation of molar volumes or densities could be performed using the "ideal" behavior of the molar volumes of mixtures of ionic liquids. This model is based on the observations of Canongia Lopes et al. (J. Phys. Chem. B 2005, 109, 3519-3525) which showed that this ideal behavior is independent of the temperature and allows the molar volume of a given ionic liquid to be calculated by the sum of the effective molar volume of the component ions. Using this assumption, the effective molar volumes of ions constituting more than 220 different ionic liquids were calculated as a function of the temperature at 0.1 MPa using more than 2150 data points. These calculated results were used to build up a group contribution model for the calculation of ionic liquid molar volumes and densities with an estimated repeatability and uncertainty of 0.36% and 0.48%, respectively. The impact of impurities (water and halide content) in ionic liquids as well as the method of determination were also analyzed and quantified to estimate the overall uncertainty. © 2008 American Chemical Society.
Resumo:
The volumetric properties of seven {water + ionic liquid} binary mixtures have been studied as a function of temperature from (293 to 343) K. The phase behaviour of the systems was first investigated using a nephelometric method and excess molar volumes were calculated from densities measured using an Anton Paar densimeter and fitted using a Redlich-Kister type equation. Two ionic liquids fully miscible with water (1-butyl-3-methylimidazolium tetrafluoroborate ([CCIm][BF]) and 1-ethyl-3-methylimidazolium ethylsulfate ([CCIm][EtSO])) and five ionic liquids only partially miscible with water (1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([CCIm][NTf]), 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([CCIm][NTf]), 1-butyl-3-methylimidazolium hexafluorophosphate ([CCIm][PF]), 1-butyl-3-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([CCPyrro][NTf]), and butyltrimethylammonium bis(trifluoromethylsulfonyl)imide ([N][NTf])) were chosen. Small excess volumes (less than 0.5 cm · mol at 298 K) are obtained compared with the molar volumes of the pure components (less than 0.3% of the molar volume of the pure ionic liquid). For all the considered systems, except for {[CCIm][EtSO] + water}, positive excess molar volumes were calculated. Finally, an increase of the non-ideality character is observed for all the systems as temperature increases. © 2009 Elsevier Ltd. All rights reserved.