127 resultados para vegetation pattern
Resumo:
Mid to high latitude forest ecosystems have undergone several major compositional changes during the Holocene. The temporal and spatial patterns of these vegetation changes hold potential information to their causes and triggers. Here we test the hypothesis that the timing of vegetation change was synchronous on a sub-continental scale, which implies a common trigger or a step-like change in climate parameters. Pollen diagrams from selected European regions were statistically divided into assemblage zones and the temporal pattern of the zone boundaries analysed. The results show that the temporal pattern of vegetation change was significantly different from random. Times of change cluster around8.2, 4.8, 3.7, and 1.2 ka, while times of higher than average stability were found around 2.1 and 5.1 ka.Compositional changes linked to the expansion of Corylus avellana and Alnus glutinosa centre around 10.6 and 9.5 ka, respectively. A climatic trigger initiating these changes may have occurred 0.5 to 1 ka earlier, respectively. The synchronous expansion of C. avellana and A. glutinosa exemplify that dispersal is not necessarily followed by population expansion. The partly synchronous, partly random expansion of A. glutinosa in adjacent European regions exemplifies that sudden synchronous population expansions are not species specific traits but vary regionally.
Resumo:
Polycyclic aromatic hydrocarbons (PAHs) were determined in soil and vegetation following a large scale chemical fire involving 10,000 ton of polypropylene. In comparison with sites outside the plume from the fire, PAH concentrations were elevated in grass shoots (by up to 70-fold) and in soil (by up to 370-fold). The pattern of PAH dispersion under the plume was dependent on the physical-chemical properties of individual PAHs. The lighter, least hydrophobic PAHs were dispersed into the environment at greater distances than heavier, more hydrophobic PAHs. At the most distant sampling point (4.5 km) under the plume, the low molecular weight PAHs were still considerably elevated in vegetation samples compared to control sites. Dispersion appeared to be regulated by the compounds partitioning between the vapour and particulate phase, with dry particulate deposition occurring closer to the fire source than gaseous deposition. For all PAHs, the fire resulted in greater contamination of soils compared to grasses, with the relative ratio of plant/soil contamination decreasing as hydrophobicity increased.
Resumo:
The vegetation of Europe has undergone substantial changes during the course of the Holocene epoch, resulting from range expansion of plants following climate amelioration, competition between taxa and disturbance through anthropogenic activities. Much of the detail of this pattern is understood from
decades of pollen analytical work across Europe, and this understanding has been used to address questions relating to vegetation-climate feedback, biogeography and human impact. Recent advances in modelling the relationship between pollen and vegetation now make it possible to transform pollen
proportions into estimates of vegetation cover at both regional and local spatial scales, using the Landscape Reconstruction Algorithm (LRA), i.e. the REVEALS (Regional Estimates of VEgetation Abundance from Large Sites) and the LOVE (LOcal VEgetation) models. This paper presents the compilation and analysis of 73 pollen stratigraphies from the British Isles, to assess the application of the LRA and describe the pattern of landscape/woodland openness (i.e. the cover of low herb and bushy vegetation) through the Holocene. The results show that multiple small sites can be used as an effective replacement for a single large site for the reconstruction of regional vegetation cover. The REVEALS vegetation estimates imply that the British Isles had a greater degree of landscape/woodland openness at the regional scale than areas on the European mainland. There is considerable spatial bias in the British Isles dataset towards wetland areas and uplands, which may explain higher estimates of landscape openness compared with Europe. Where multiple estimates of regional vegetation are available from within the same region inter-regional differences are greater than intra-regional differences, supporting the use of the REVEALS model to the estimation of regional vegetation from pollen data.
Resumo:
The Bronze Age in Britain was a time of major social and cultural changes, reflected in the division of the landscape into field systems and the establishment of new belief systems and ritual practices. Several hypotheses have been advanced to explain these changes, and assessment of many of them is dependent on the availability of detailed palaeoenvironmental data from the sites concerned. This paper explores the development of a later prehistoric landscape in Orkney, where a Bronze Age field system and an apparently ritually-deposited late Bronze Age axe head are located in an area of deep blanket peat from which high-resolution palaeoenvironmental sequences have been recovered. There is no indication that the field system was constructed to facilitate agricultural intensification, and it more likely reflects a cultural response to social fragmentation associated with a more dispersed settlement pattern. There is evidence for wetter conditions during the later Bronze Age, and the apparent votive deposit may reflect the efforts of the local population to maintain community integrity during a time of perceptible environmental change leading to loss of farmland. The study emphasises the advantages of close integration of palaeoenvironmental and archaeological data for interpretation of prehistoric human activity. The palaeoenvironmental data also provide further evidence for the complexity of prehistoric woodland communities in Orkney, hinting at greater diversity than is often assumed. Additionally, differing dates for woodland decline in the two sequences highlight the dangers of over-extrapolation from trends observed in a single pollen profile, even at a very local scale.
Resumo:
Natural landscape boundaries between vegetation communities are dynamically influenced by the selective grazing of herbivores. Here we show how this may be an emergent property of very simple animal decisions, without the need for any sophisticated choice rules etc., using a model based on biased diffusion. Animal grazing intensity is coupled with plant competition, resulting in reaction-diffusion dynamics, from which stable boundaries spontaneously emerge. In the model, animals affect their resources by both consumption and trampling. It is assumed that forage consists of two heterogeneously distributed competing resource species, one that is preferred (grass) over the other (heather) by the animals. The solutions to the resulting system of differential equations for three cases a) optimal foraging, b) random walk foraging and c) taxis-diffusion are presented. Optimal and random foraging gave unrealistic results, but taxis-diffusion accorded well with field observations. Persistent boundaries between patches of near-monoculture vegetation were predicted, with these boundaries drifting in response to overall grazing pressure (grass advancing with increased grazing and vice versa). The reaction-taxis-diffusion model provides the first mathematical explanation for such vegetation mosaic dynamics and the parameters of the model are open to experimental testing.
Resumo:
The Ov/Br septin gene, which is also a fusion partner of MLL in acute myeloid leukaemia, is a member of a family of novel GTP binding proteins that have been implicated in cytokinesis and exocytosis. In this study, we describe the genomic and transcriptional organization of this gene, detailing seventeen exons distributed over 240 kb of sequence. Extensive database analyses identified orthologous rodent cDNAs that corresponded to new, unidentified 5' splice variants of the Ov/Br septin gene, increasing the total number of such variants to six. We report that splicing events, occurring at non-canonical sites within the body of the 3' terminal exon, remove either 1801 bp or 1849 bp of non-coding sequence and facilitate access to a secondary open reading frame of 44 amino acids maintained near the end of the 3' UTR. These events constitute a novel coding arrangement and represent the first report of such a design being implemented by a eukaryotic gene. The various Ov/Br proteins either differ minimally at their amino and carboxy termini or are equivalent to truncated versions of larger isoforms. Northern analysis with an Ov/Br septin 3' UTR probe reveals three transcripts of 4.4, 4 and 3 kb, the latter being restricted to a sub-set of the tissues tested. Investigation of the identified Ov/Br septin isoforms by RT-PCR confirms a complex transcriptional pattern, with several isoforms showing tissue-specific distribution. To date, none of the other human septins have demonstrated such transcriptional complexity.