244 resultados para vascular compliance
Resumo:
Background: A relationship may exist between body iron stores, endothelial dysfunction and overall cardiovascular risk.
Aims: To compare vascular compliance, biochemical endothelial function and antioxidant status between patients with homozygous hereditary haemochromatosis and healthy controls.
Methods: Haemochromatosis patients and healthy controls were recruited. Measures of vascular compliance were assessed by applanation tonometry. Serological markers of endothelial function (plasma lipid hydroperoxides, cell adhesion molecules), antioxidant levels (ascorbate, lipid soluble antioxidants) and high-sensitivity C-reactive protein (CRP) were also measured.
Results: Thirty-five hereditary haemochromatosis patients (ten females, mean age 54.6) and 36 controls (27 female, mean age 54.0) were recruited. Haemochromatosis patients had significantly higher systolic and diastolic blood pressures. Pulse wave velocity (PWV) was significantly higher in male haemochromatosis patients (9.90 vs. 8.65 m/s, p = 0.048). Following adjustment for age and blood pressure, male haemochromatosis patients continued to have a trend for higher PWVs (+1.37 m/s, p = 0.058). Haemochromatosis patients had significantly lower levels of ascorbate (46.11 vs. 72.68 lmol/L, p = 0.011), retinol (1.17 vs. 1.81 lmol/L, p = 0.001) and g-tocopherol (2.51 vs. 3.14 lmol/L, p = 0.011). However, there was no difference in lipid hydroperoxides (0.46 vs. 0.47 nmol/L, p = 0.94), cell adhesion molecule levels (ICAM: 348.12 vs. 308.03 ng/mL, p = 0.32 and VCAM: 472.78 vs. 461.31 ng/mL, p = 0.79) or high-sensitivity CRP (225.01 vs. 207.13 mg/L, p = 0.32).
Conclusions: Haemochromatosis is associated with higher PWVs in males and diminished antioxidants across the sexes but no evidence of endothelial dysfunction or increased lipid peroxidation.
Resumo:
AIMS: The effect of dietary sucrose on insulin resistance and the pathogenesis of diabetes and vascular disease is unclear. We assessed the effect of 5% versus 15% sucrose intakes as part of a weight maintaining, eucaloric diet in overweight/obese subjects.
METHODS: Thirteen subjects took part in a randomised controlled crossover study (M:F 9:4, median age 46 years, range 37-56 years, BMI 31.7±0.9 kg/m(2)). Subjects completed two 6 week dietary periods separated by 4 week washout. Diets were designed to have identical macronutrient profile. Insulin action was assessed using a two-step hyperinsulinaemic euglycaemic clamp; glucose tolerance, vascular compliance, body composition and lipid profiles were also assessed.
RESULTS: There was no change in weight or body composition between diets. There was no difference in peripheral glucose utilization or suppression of endogenous glucose production. Fasting glucose was significantly lower after the 5% diet. There was no demonstrated effect on lipid profiles, blood pressure or vascular compliance.
CONCLUSION: A low-sucrose diet had no beneficial effect on insulin resistance as measured by the euglycaemic glucose clamp. However, reductions in fasting glucose, one hour insulin and insulin area under the curve with the low sucrose diet on glucose tolerance testing may indicate a beneficial effect and further work is required to determine if this is the case. Clinical Trial Registration number ISRCTN50808730.
Resumo:
Purpose: This pilot study was aimed to establish techniques for assessing and observing trends in endothelial function, antioxidant status and vascular compliance in newly diagnosed HFE haemochromatosis during the first year of venesection.
Patients/methods: Untreated newly diagnosed HFE haemochromatosis patients were tested for baseline liver function, iron indices, lipid profile, markers of endothelial function, anti-oxidant status and vascular compliance. Following baseline assessment, subjects attended at 6-weeks and at 3, 6, 9 and 12-months for follow-up studies.
Results: Ten patients were recruited (M = 8, F = 2, mean age = 51 years). Venesection significantly increased high density lipoproteins at 12-months (1.25 mmol/L vs. 1.37 mmol/L, p = 0.01). However, venesection did not significantly affect lipid hydroperoxides, intracellular and vascular cell adhesion molecules or high sensitivity C-reactive protein (0.57 mu mol/L vs. 0.51 mu mol/L, p = 0.45, 427.4 ng/ml vs. 307.22 ng/ml, p = 0.54, 517.70 ng/ml vs. 377.50 ng/ml, p = 0.51 and 290.75 mu g/dL vs. 224.26 mu g/dL, p = 0.25). There was also no significant effect of venesection on anti-oxidant status or pulse wave velocity (9.65 m/s vs. 8.74 m/s, p = 0.34).
Conclusions: Venesection significantly reduced high density lipoproteins but was not associated with significant changes in endothelial function, anti-oxidant status or vascular compliance. Larger studies using this established methodology are required to clarify this relationship further.
Resumo:
The long-term impact of dietary carbohydrate type, in particular sucrose, on insulin resistance and the development of diabetes and atherosclerosis is not established. Current guidelines for the healthy population advise restriction of sucrose intake. We investigated the effect of high- versus low-sucrose diet (25 vs. 10%, respectively, of total energy intake) in 13 healthy subjects aged 33 +/- 3 years (mean +/- SE), BMI 26.6 +/- 0.9 kg/m(2), in a randomized crossover design with sequential 6-week dietary interventions separated by a 4-week washout. Weight maintenance, eucaloric diets with identical macronutrient profiles and fiber content were designed. All food was weighed and distributed. Insulin action was assessed using a two-step euglycemic clamp; glycemic profiles were assessed by the continuous glucose monitoring system and vascular compliance by pulse-wave analysis. There was no change in weight across the study. Peripheral glucose uptake and suppression of endogenous glucose production were similar after each diet. Glycemic profiles and measures of vascular compliance did not change. A rise in total and LDL cholesterol was observed. In this study, a high-sucrose intake as part of an eucaloric, weight-maintaining diet had no detrimental effect on insulin sensitivity, glycemic profiles, or measures of vascular compliance in healthy nondiabetic subjects.
Resumo:
OBJECTIVE Low-fat hypocaloric diets reduce insulin resistance and prevent type 2 diabetes in those at risk. Low-carbohydrate, high-fat diets are advocated as an alternative, but reciprocal increases in dietary fat may have detrimental effects on insulin resistance and offset the benefits of weight reduction.
RESEARCH DESIGN AND METHODS We investigated a low-fat (20% fat, 60% carbohydrate) versus a low-carbohydrate (60% fat, 20% carbohydrate) weight reduction diet in 24 overweight/obese subjects ([mean ± SD] BMI 33.6 ± 3.7 kg/m2, aged 39 ± 10 years) in an 8-week randomized controlled trial. All food was weighed and distributed, and intake was calculated to produce a 500 kcal/day energy deficit. Insulin action was assessed by the euglycemic clamp and insulin secretion by meal tolerance test. Body composition, adipokine levels, and vascular compliance by pulse-wave analysis were also measured.
RESULTS Significant weight loss occurred in both groups (P < 0.01), with no difference between groups (P = 0.40). Peripheral glucose uptake increased, but there was no difference between groups (P = 0.28), and suppression of endogenous glucose production was also similar between groups. Meal tolerance–related insulin secretion decreased with weight loss with no difference between groups (P = 0.71). The change in overall systemic arterial stiffness was, however, significantly different between diets (P = 0.04); this reflected a significant decrease in augmentation index following the low-fat diet, compared with a nonsignificant increase within the low-carbohydrate group.
CONCLUSIONS This study demonstrates comparable effects on insulin resistance of low-fat and low-carbohydrate diets independent of macronutrient content. The difference in augmentation index may imply a negative effect of low-carbohydrate diets on vascular risk.
Resumo:
Background This study evaluated the effect of statins in Primary biliary cirrhosis (PBC) on endothelial function, anti-oxidant status and vascular compliance. Methods Primary biliary cirrhosis patients with hypercholesterolaemia were randomized to receive 20mg simvastatin or placebo in a single blind, randomized controlled trial. Body mass index, blood pressure, glucose, liver function, lipid profile, immunoglobulin levels, serological markers of endothelial function and anti-oxidant status were measured as well as vascular compliance, calculated from pulse wave analysis and velocity, at recruitment and again at 3, 6, 9 and 12months. Results Twenty-one PBC patients (F=20, mean age = 55) were randomized to simvastatin 20mg (n=11) or matched placebo (n=10). At completion of the trial, serum cholesterol levels in the simvastatin group were significantly lower compared with the placebo group (4.91mmol/L vs. 6.15mmol/L, P=0.01). Low-density lipoprotein (LDL) levels after 12months were also significantly lower in the simvastatin group (2.33mmol/L vs. 3.53mmol/L, P=0.01). After 12months of treatment, lipid hydroperoxides were lower (0.49mol/L vs. 0.59mol/L, P=0.10) while vitamin C levels were higher (80.54mol/L vs. 77.40mol/L, P=0.95) in the simvastatin group. Pulse wave velocity remained similar between treatment groups at 12months (8.45m/s vs. 8.80m/s, P=0.66). Only one patient discontinued medication owing to side effects. No deterioration in liver transaminases was noted in the simvastatin group. Conclusions Statin therapy in patients with PBC appears safe and effective towards overall reductions in total cholesterol and LDL levels. Our initial study suggests that simvastatin may also confer advantageous effects on endothelial function and antioxidant status.
Resumo:
Far from simply lining the inner surface of blood vessels, the cellular monolayer that comprises the endothelium is a highly active organ that regulates vascular tone. In health, the endothelium maintains the balance between opposing dilator and constrictor influences, while in disease, it is the common ground on which cardiovascular risk factors act to initiate the atherosclerotic process. As such, it is the site at which cardiovascular disease begins and consequently acts as a barometer of an individual's likely future cardiovascular health. The vascular endothelium is a very active organ responsible for the regulation of vascular tone through the effects of locally synthesized mediators, predominantly nitric oxide (NO), endothelial NO synthase (eNOS), and superoxide. NO is abundantly evident in normally functioning vasculature where it acts as a vasodilator, inhibits inflammation, and has an antiaggregant effect on platelets. Its depletion is both a sign and cause of endothelial dysfunction resulting from reduced activity of eNOS and amplified production of nicotinamide adenine dinucleotide oxidase, which, in turn, results in raised levels of reactive oxygen species. This cascade is the basis for reduced vascular compliance through an imbalanced regulation of tone with a predominance of vasoconstrictive elements. Further, structural changes in the microvasculature are a critical early step in the loss of normal function. This microvascular dysfunction is known to be highly predictive of future macrovascular events and is consequently a very attractive target for intervention in the hypertensive population in order to prevent cardiovascular events.