47 resultados para two-dimensional cubic-diamond-like lattice


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A dusty plasma crystalline configuration with equal charge dust grains and mass is considered. Both charge and mass of each dust species are taken to be constant. Two differential equations for a two-dimensional hexagonal crystal on the basis of a Yukawa-type potential energy and a

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The amplitude modulation of dust lattice waves (DLWs) propagating in a two-dimensional hexagonal dust crystal is investigated in a continuum approximation, accounting for the effect of dust charge polarization (dressed interactions). A dusty plasma crystalline configuration with constant dust grain charge and mass is considered. The dispersion relation and the group velocity for DLWs are determined for wave propagation in both longitudinal and transverse directions. The reductive perturbation method is used to derive a (2+1)-dimensional nonlinear Schrodinger equation (NLSE). New expressions for the coefficients of the NLSE are derived and compared, for a Yukawa-type potential energy and for a

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The propagation of nonlinear dust-lattice waves in a two-dimensional hexagonal crystal is investigated. Transverse (off-plane) dust grain oscillatory motion is considered in the form of a backward propagating wave packet whose linear and nonlinear characteristics are investigated. An evolution equation is obtained for the slowly varying amplitude of the first (fundamental) harmonic by making use of a two-dimensional lattice multiple scales technique. An analysis based on the continuum approximation (spatially extended excitations compared to the lattice spacing) shows that wave packets will be modulationally stable and that dark-type envelope solitons (density holes) may occur in the long wavelength region. Evidence is provided of modulational instability and of the occurrence of bright-type envelopes (pulses) at shorter wavelengths. The role of second neighbor interactions is also investigated and is shown to be rather weak in determining the modulational stability region. The effect of dissipation, assumed negligible in the algebra throughout the article, is briefly discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The R-matrix method has proved to be a remarkably stable, robust and efficient technique for solving the close-coupling equations that arise in electron and photon collisions with atoms, ions and molecules. During the last thirty-four years a series of related R-matrix program packages have been published periodically in CPC. These packages are primarily concerned with low-energy scattering where the incident energy is insufficient to ionize the target. In this paper we describe previous term2DRMP,next term a suite of two-dimensional R-matrix propagation programs aimed at creating virtual experiments on high performance and grid architectures to enable the study of electron scattering from H-like atoms and ions at intermediate energies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this paper is to investigate the mechanism of nanoscale fatigue using nano-impact and multiple-loading cycle nanoindentation tests, and compare it to previously reported findings of nanoscale fatigue using integrated stiffness and depth sensing approach. Two different film loading mechanism, loading history and indenter shapes are compared to comprehend the influence of test methodology on the nanoscale fatigue failure mechanisms of DLC film. An amorphous 100 nm thick DLC film was deposited on a 500 μm silicon substrate using sputtering of graphite target in pure argon atmosphere. Nano-impact and multiple-load cycle indentations were performed in the load range of 100 μN to 1000 μN and 0.1 mN to 100 mN, respectively. Both test types were conducted using conical and Berkovich indenters. Results indicate that for the case of conical indenter, the combination of nano-impact and multiple-loading cycle nanoindentation tests provide information on the life and failure mechanism of DLC film, which is comparable to the previously reported findings using the integrated stiffness and depth sensing approach. However, the comparison of results is sensitive to the applied load, loading mechanism, test-type and probe geometry. The loading mechanism and load history is therefore critical which also leads to two different definitions of film failure. The choice of exact test methodology, load and probe geometry should therefore be dictated by the in-service tribological conditions, and where necessary both test methodologies can be used to provide better insights of failure mechanism. Molecular dynamics (MD) simulations of the elastic response of nanoindentation is reported, which indicates that the elastic modulus of the film measured using MD simulation was higher than that experimentally measured. This difference is attributed to the factors related to the presence of material defects, crystal structure, residual stress, indenter geometry and loading/unloading rate differences between the MD and experimental results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe all two dimensional unital Riesz algebras and study representations of them in Riesz algebras of regular operators. Although our results are not complete, we do demonstrate that very varied behaviour can occur even though all these algebras can be given a Banach lattice algebra norm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the development of a two-dimensional transient catalyst model. Although designed primarily for two-stroke direct injection engines, the model is also applicable to four-stroke lean burn and diesel applications. The first section describes the geometries, properties and chemical processes simulated by the model and discusses the limitations and assumptions applied. A review of the modeling techniques adopted by other researchers is also included. The mathematical relationships which are used to represent the system are then described, together with the finite volume method used in the computer program. The need for a two-dimensional approach is explained and the methods used to model effects such as flow and temperature distribution are presented. The problems associated with developing surface reaction rates are discussed in detail and compared with published research. Validation and calibration of the model is achieved by comparing predictions with measurements from a flow reactor. While an extensive validation process, involving detailed measurements of gas composition and thermal gradients, has been completed, the analysis is too detailed for publication here and is the subject of a separate technical paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the detailed validation of a computer model designed to simulate the transient light-off in a two-stroke oxidation catalyst. A plug flow reactor is employed to provide measurements of temperature and gas concentration at various radial and axial locations inside the catalyst. These measurements are recorded at discrete intervals during a transient light-off in which the inlet temperature is increased from ambient to 300oC at rates of up to 6oC/sec. The catalyst formulation used in the flow reactor, and its associated test procedures, are then simulated by the computer and a comparison made between experimental readings and model predictions. The design of the computer model to which this validation exercise relates is described in detail in a separate technical paper. The first section of the paper investigates the warm-up characteristics of the substrate and examines the validity of the heat transfer predictions between the wall and the gas in the absence of chemical reactions. The predictions from a typical single-component CO transient light-off test are discussed in the second section and are compared with experimental data. In particular the effect of the temperature ramp on the light-off curve and reaction zone development is examined. An analysis of the C3H6 conversion is given in the third section while the final section examines the accuracy of the light-off curves which are produced when both CO and C3H6 are present in the feed gas. The analysis shows that the heat and mass transfer calculations provided reliable predictions of the warm-up behaviour and post light-off gas concentration profiles. The self-inhibition and cross-inhibition terms in the global rate expressions were also found to be reasonably reliable although the surface reaction rates required calibration with experimental data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the emerging use of diamond-like carbon (DLC) as a coating for medical devices, few studies have examined the resistance of DLC coatings onto medical polymers to both microbial adherence and encrustation. In this study, amorphous DLC of a range of refractive indexes (1.7-1.9) and thicknesses (100-600 nm) was deposited onto polyurethane, a model polymer, and the resistance to microbial adherence (Escherichia coli; clinical isolate) and encrustation examined using in vitro models. In comparison to the native polymer, the advancing and receding contact angles of DLC-coated polyurethane were lower, indicating greater hydrophilic properties. No relationship was observed between refractive index, thickness, and advancing contact angle, as determined using multiple correlation analysis. The resistances of the various DLC-coated polyurethane films to encrustation and microbial adherence were significantly greater than that to polyurethane; however, there were individual differences between the resistances of the various DLC coatings. In general, increasing the refractive index of the coatings (100 nm thickness) decreased the resistance of the films to both hydroxyapatite and struvite encrustation and to microbial adherence. Films of lower thicknesses (100 and 200 nm; of defined refractive index, 1.8), exhibited the greatest resistance to encrustation and to microbial adherence. In conclusion, this study has uniquely illustrated both the microbial antiadherence properties and resistance to urinary encrustation of DLC-coated polyurethane. The resistances to encrustation and microbial adherence were substantial, and in light of this, it is suggested that DLC coatings of low thickness and refractive index show particular promise as coatings of polymeric medical devices. (c) 2006 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The glass transition in a quantum Lennard-Jones mixture is investigated by constant-volume path-integral simulations. Particles are assumed to be distinguishable, and the strength of quantum effects is varied by changing h from zero (the classical case) to one (corresponding to a highly quantum-mechanical regime). Quantum delocalization and zero point energy drastically reduce the sensitivity of structural and thermodynamic properties to the glass transition. Nevertheless, the glass transition temperature T-g can be determined by analyzing the phase space mobility of path-integral centroids. At constant volume, the T-g of the simulated model increases monotonically with increasing h. Low temperature tunneling centers are identified, and the quantum versus thermal character of each center is analyzed. The relation between these centers and soft quasilocalized harmonic vibrations is investigated. Periodic minimizations of the potential energy with respect to the positions of the particles are performed to determine the inherent structure of classical and quantum glassy samples. The geometries corresponding to these energy minima are found to be qualitatively similar in all cases. Systematic comparisons for ordered and disordered structures, harmonic and anharmonic dynamics, classical and quantum systems show that disorder, anharmonicity, and quantum effects are closely interlinked.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nonlinear properties of two-dimensional cylindrical quantum dust-ion-acoustic (QDIA) and quantum dust-acoustic (QDA) waves are studied in a collisionless, unmagnetized and dense (quantum) dusty plasma. For this purpose, the reductive perturbation technique is employed to the quantum hydrodynamical equations and the Poisson equation, obtaining the cylindrical Kadomtsev–Petviashvili (CKP) equations. The effects of quantum diffraction, as well as quantum statistical and geometric effects on the profiles of QDIA and QDA solitary waves are examined. It is found that the amplitudes and widths of the nonplanar QDIA and QDA waves are significantly affected by the quantum electron tunneling effect. The addition of a dust component to a quantum plasma is seen to affect the propagation characteristics of localized QDIA excitations. In the case of low-frequency QDA waves, this effect is even stronger, since the actual form of the potential solitary waves, in fact, depends on the dust charge polarity (positive/negative) itself (allowing for positive/negative potential forms, respectively). The relevance of the present investigation to metallic nanostructures is highlighted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports the initial response of atomic nitrogen doped diamond like carbon (DLC) to endothelial cells in vitro. The introduction of nitrogen atoms/molecules to the diamond like carbon structures leads to an atomic structural change favorable to the attachment of human micro-vascular enclothelial cells. Whilst the semi-conductivity induced by nitrogen in DLC is thought to play a part, the increase in the inion-bonded N atoms and N-2 molecules in the atomic doped species (with the exclusion of the charged species) seems to contribute to the improved attachment of human microvascular endothelial cells. The increased endothelial attachment is associated with a lower work function and slightly higher water contact angle in the atomic doped films, where the heavy charged particles are excluded. The films used in the study were synthesized by the RF PECVD technique followed by post deposition doping with nitrogen, and afterwards the films were characterized by XPS, Raman spectroscopy, SIMS and Kelvin probe. The water contact angles were measured, and the counts of the adherent endothelial cells on the samples were carried out. This study is relevant and contributory to improving biocompatibility of surgical implants and prostheses.