18 resultados para tilt.
Resumo:
The design of a linearly-polarised agile antenna is presented. The antenna is fed by a quasi-lumped coupler which has the ability to tune the magnitude ratio between its two outputs from -30 dB to 15 dB by modifying the bias of two varactor diodes. In this way the relative power fed to each orthogonal port of a patch antenna can be varied. Consequently, tilt control of the radiated linearly-polarised waves is achieved over a range of 90 degrees.
Resumo:
In this paper, we show how the polarisation state of a linearly polarised antenna can be recovered through the use of a three-term error correction model. The approach adopted is shown to be robust in situations where some multipath exists and where the sampling channels are imperfect with regard to both their amplitude and phase tracking. In particular, it has been shown that error of the measured polarisation tilt angle can be improved from 33% to 3% and below by applying the proposed calibration method. It is described how one can use a rotating dipole antenna as both the calibration standard and as the polarisation encoder, thus simplifying the physical arrangement of the transmitter. Experimental results are provided in order to show the utility of the approach, which could have a variety of applications including bandwidth conservative polarisation sub-modulation in advanced wireless communications systems.
Resumo:
In shaded scenes surface features can appear either concave or convex, depending upon the viewers judment about the direction of the prevailing illuminant. If other curvature cues are added to the image this ambiguity can be removed. However, it is not clear to what extent, if any, illuminant positin exerts an influence on the perceived magnitude of surface curvature. Subjects were presented with pairs of spherical surface patches in a curavture matching task. The patches were defined by shading and texture cues. The percevied curvature of a standard patch was measured as a function of light source position. We found a clear effect of light source position on apparent curvature. Perceived curvature decreased as light source tilt increased and as light source slant decreased. We also found that the strength of this effect is determined partly by a surface's reflectance function and partly by the relative weight of the texture cue. When a specular component was added to the stimuli, the effect of light source orientation was weakened. The weight of the texture cue was manipulated by disrupting the regular distribution of texture elements. We found an inverse relationship between the strength of the effecct and the weight of the texture cue: lowering the texture cue weight resulted in an enhancement of the illuminant position effect.
Resumo:
First-principles calculations of the Sigma 5(310)[001] symmetric tilt grain boundary in Cu with Bi, Na, and Ag substitutional impurities provide evidence that in the phenomenon of Bi embrittlement of Cu grain boundaries electronic effects do not play a major role; on the contrary, the embrittlement is mostly a structural or "size" effect. Na is predicted to be nearly as good an embrittler as Bi, whereas Ag does not embrittle the boundary in agreement with experiment. While we reject the prevailing view that "electronic" effects (i.e., charge transfer) are responsible for embrittlement, we do not exclude the role of chemistry. However, numerical results show a striking equivalence between the alkali metal Na and the semimetal Bi, small differences being accounted for by their contrasting "size" and "softness" (defined here). In order to separate structural and chemical effects unambiguously if not uniquely, we model the embrittlement process by taking the system of grain boundary and free surfaces through a sequence of precisely defined gedanken processes; each of these representing a putative mechanism. We thereby identify three mechanisms of embrittlement by substitutional impurities, two of which survive in the case of embrittlement or cohesion enhancement by interstitials. Two of the three are purely structural and the third contains both structural and chemical elements that by their very nature cannot be further unraveled. We are able to take the systems we study through each of these stages by explicit computer simulations and assess the contribution of each to the net reduction in intergranular cohesion. The conclusion we reach is that embrittlement by both Bi and Na is almost exclusively structural in origin; that is, the embrittlement is a size effect.
Resumo:
The design, construction and measured performance is described of an offset parabolic reflector antenna which employs a reflectarray subreflector to tilt the focused beam from the boresight direction at 94 GHz. An analysis technique based on the method of moments (MoM) is used to design the dual-reflector antenna. Numerical simulations were employed to demonstrate that the high gain pattern of the antenna can be tilted to a predetermined angle by introducing a progressive phase shift across the aperture of the reflectarray. Experimental validation of the approach was made by constructing a 28 × 28 element patch reflectarray which was designed to deflect the beam 5° from the boresight direction in the azimuth plane. The array was printed on a 115 µm thick metal backed quartz wafer and the radiation patterns of the dual reflector antenna were measured from 92.6-95.5 GHz. The experimental results are used to validate the analysis technique by comparing the radiation patterns and the reduction in the peak gain due to beam deflection from the boresight direction. Moreover the results demonstrate that this design concept can be developed further to create an electronically scanned dual reflector antenna by using a tunable reflectarray subreflector.
Resumo:
XPS, TPD and HREEL results indicate that molecular pyrrole is a fragile adsorbate on clean Pd{111}. At 200 K and for low coverages, the molecule remains intact and adopts an almost flat-lying geometry. With increasing coverage, pyrrole molecules tilt away from the surface and undergo N-H bond cleavage to form strongly tilted pyrrolyl (C4H4N) species. In addition, a weakly bound, strongly tilted form of molecular pyrrole is observed at coverages approaching saturation. Heating pyrrole monolayers results in desorption of similar to 15% of the overlayer as molecular pyrrole and N-a+ C4H4Na recombination with formation of hat-lying pyrrole molecules. This strongly bound species undergoes decomposition to adsorbed CN, CHx and H, leading ultimately to desorption of HCN and H-2. The implications of these results for the production of pyrrole by a heterogeneously catalysed route are discussed.
Resumo:
Background: Rapid compensatory arm reactions represent important response strategies following an unexpected loss of balance. While it has been assumed that early corrective actions arise largely from sub-cortical networks, recent findings have prompted speculation about the potential role of cortical involvement. To test the idea that cortical motor regions are involved in early compensatory arm reactions, we used continuous theta burst stimulation (cTBS) to temporarily suppress the hand area of primary motor cortex (M1) in participants prior to evoking upper limb balance reactions in response to whole body perturbation. We hypothesized that following cTBS to the M1 hand area evoked EMG responses in the stimulated hand would be diminished. To isolate balance reactions to the upper limb participants were seated in an elevated tilt-chair while holding a stable handle with both hands. The chair was held vertical by a magnet and was triggered to fall backward unpredictably. To regain balance, participants used the handle to restore upright stability as quickly as possible with both hands. Muscle activity was recorded from proximal and distal muscles of both upper limbs.
Results: Our results revealed an impact of cTBS on the amplitude of the EMG responses in the stimulated hand muscles often manifest as inhibition in the stimulated hand. The change in EMG amplitude was specific to the target hand muscles and occasionally their homologous pairs on the non-stimulated hand with no consistent effects on the remaining more proximal arm muscles.
Conclusions: Present findings offer support for cortical contributions to the control of early compensatory arm reactions following whole-body perturbation.
Resumo:
In this paper we conduct a number of experiments to assess the impact of typical human body movements on the signal characteristics of outdoor body-to-body communications channels using flexible patch antennas. A modified log-distance path loss model which accounts for body shadowing and signal fading due to small movements is used to model the measured data. For line of sight channels, in which both ends of the body-to-body link are stationary, the path loss exponent is close to that for free space, although the received signal is noticeably affected by involuntary or physiological-related movements of both persons. When one person moves to obstruct the direct signal path between nodes, attenuation by the person's body can be as great as 40 dB, with even greater variation observed due to fading. The effects of movements such as rotation, tilt, walking in line of sight and non-line of sight on body-to-body communications channels are also investigated in this study. © 2011 IEEE.
Resumo:
Epitaxial tetragonal 425 and 611 nm thick Pb(ZrTi)O (PZT) films are deposited by pulsed laser deposition on SrRuO-coated (100) SrTiO 24° tilt angle bicrystal substrates to create a single PZT grain boundary with a well-defined orientation. On either side of the bicrystal boundary, the films show square hysteresis loops and have dielectric permittivities of 456 and 576, with loss tangents of 0.010 and 0.015, respectively. Using piezoresponse force microscopy (PFM), a decrease in the nonlinear piezoelectric response is observed in the vicinity (720-820 nm) of the grain boundary. This region represents the width over which the extrinsic contributions to the piezoelectric response (e.g., those associated with the domain density/configuration and/or the domain wall mobility) are influenced by the presence of the grain boundary. Transmission electron microscope (TEM) images collected near and far from the grain boundary indicate a strong preference for (101)/(1-01) type domain walls at the grain boundary, whereas (011)/(01-1) and (101)/(1-01) are observed away from this region. It is proposed that the elastic strain field at the grain boundary interacts with the ferro-electric/elastic domain structure, stabilizing (101)/(1-01) rather than (011)/(01-1) type domain walls, which inhibits domain wall motion under applied field and decreases non-linearity. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.