3 resultados para third-order non-linearity
Resumo:
Background: Most qualitative studies exploring the impactof prostate cancer on men and their partners consider the dominant ethnicgroups in the USA, UK, Scandinavia and Australia, with generally concordantfindings. Other ethnic groups are likelyto have different experiences.
Aims: To explorethe impact of prostate cancer and its treatment on men and their partners fromthe less studied ethnic groups.
Methods: Using meta-ethnographyand textual narrative we synthesised peer reviewed qualitative interview-based studiesdated 2000-2015 focused on less well reported ethnic groups, as a sub-synthesisof a comprehensive metasynthesis on the impact of prostate cancer.
Results: Twenty-twopapers (15 studies) covering 11 ethnic groups were analysed. Nine studies considered black and minorityethnic groups in the UK and USA, with the remainder in Brazil, the PacificIslands, Israel, Turkey and Japan. We collected first and second order themesfrom the studies to develop conceptual third order themes with the following specificto the US and UK minority groups andPacific Islanders: A spiritual continuum: from the will of God to God ashelpmate; One more obstacle in the lifelong fight against adversity; Developingsensitive talk with a purpose (on disclosingthe cancer to informal networks in culturally appropriate ways). Themes from theother studies were similar to those in the overall metasynthesis.
Conclusions: Healthcare for prostate cancer should takeaccount of contextually and culturally specific coping mechanisms andpsychosocial factors in minority ethnic groups. More studies are needed indiverse ethnic groups.
Resumo:
This paper presents an extension to the energy vector, well known in the Ambisonics literature, to improve its predictions of localisation at off-centre listening positions. In determining the source direction, a perceptual weight is assigned to each loudspeaker gain, taking into account the relative arrival times, levels, and directions of the loudspeaker signals. The proposed model is evaluated alongside the original energy vector and two binaural models through comparison with the results of recent perceptual studies. The extended version was found to provide results that were at least 50% more accurate than the second best predictor for two experiments involving off-centre listeners with first- and third-order Ambisonics systems.
Resumo:
In recent years modern numerical methods have been employed in the design of Wave Energy Converters (WECs), however the high computational costs associated with their use makes it prohibitive to undertake simulations involving statistically relevant numbers of wave cycles. Experimental tests in wave tanks could also be performed more efficiently and economically if short time traces, consisting of only a few wave cycles, could be used to evaluate the hydrodynamic characteristics of a particular device or design modification. Ideally, accurate estimations of device performance could be made utilizing results obtained from investigations with a relatively small number of wave cycles. However the difficulty here is that many WECs, such as the Oscillating Wave Surge Converter (OWSC), exhibit significant non-linearity in their response. Thus it is challenging to make accurate predictions of annual energy yield for a given spectral sea state using short duration realisations of that sea. This is because the non-linear device response to particular phase couplings of sinusoidal components within those time traces might influence the estimate of mean power capture obtained. As a result it is generally accepted that the most appropriate estimate of mean power capture for a sea state be obtained over many hundreds (or thousands) of wave cycles. This ensures that the potential influence of phase locking is negligible in comparison to the predictions made. In this paper, potential methods of providing reasonable estimates of relative variations in device performance using short duration sea states are introduced. The aim of the work is to establish the shortness of sea state required to provide statistically significant estimations of the mean power capture of a particular type of Wave Energy Converter. The results show that carefully selected wave traces can be used to reliably assess variations in power output due to changes in the hydrodynamic design or wave climate.