226 resultados para prostate cancer, cPLA2-a, eicosanoids, angiogenesis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: We characterized interleukin-8 (IL-8) and IL-8 receptor expression (CXCR1 and CXCR2) in prostate cancer to address their significance to this disease. Experimental Design: Immunohistochemistry was conducted on 40 cases of human prostate biopsy containing histologically normal and neoplastic tissue, excised from patients with locally confined or invasive androgen-dependent prostate cancer, and 10 cases of transurethral resection of the prostate material from patients with androgen-independent disease. Results: Weak to moderate IL-8 expression was strictly localized to the apical membrane of normal prostate epithelium. In contrast, membranous expression of IL-8, CXCR1, and CXCR2 was nonapical in cancer cells of Gleason pattern 3 and 4, whereas circumferential expression was present in Gleason pattern 5 and androgen-independent prostate cancer. Each of IL-8, CXCR1, and CXCR2 were also increasingly localized to the cytoplasm of cancer cells in correlation with advancing stage of disease. Cytoplasmic expression (but not apical membrane expression) of IL-8 in Gleason pattern 3 and 4 cancer correlated with Ki-67 expression (R = 0.79; P <0.001), cyclin D1 expression (R = 0.79; P <0.001), and microvessel density (R = 0.81; P <0.001). In vitro studies on androgen-independent PC3 cells confirmed the mitogenic activity of IL-8, increasing the rate of cell proliferation through activation of both CXCR1 and CXCR2 receptors. Conclusions: We propose that the concurrent increase in IL-8 and IL-8 receptor expression in human prostate cancer induces autocrine signaling that may be functionally significant in initiating and promoting the progression of prostate cancer by underpinning cell proliferation and angiogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The biological role of steroid 5 alpha-reductase isozymes (encoded by the SRD5A1 and SRD5A2 genes) and angiogenic factors that play important roles in the pathogenesis and vascularization of prostate cancer (PC) is poorly understood. The sub-cellular expression of these isozymes and vascular endothelial growth factor (VEGF) in PC tissue microarrays (n=62) was examined using immunohistochemistry. The effect of SRD5A inhibition on the angiogenesis pathway genes in PC was also examined in prostate cell lines, LNCaP, PC3, and RWPE-1, by treating them with the SRD5A inhibitors finasteride and dutasteride, followed by western blot, quantitative PCR, and ELISA chip array techniques. In PC tissues, nuclear SRD5A1 expression was strongly associated with higher cancer Gleason scores (P=0.02), higher cancer stage (P=0.01), and higher serum prostate specific antigen (PSA) levels (P=0.01), whereas nuclear SRD5A2 expression was correlated with VEGF expression (P=0.01). Prostate tumor cell viability was significantly reduced in dutasteride-treated PC3 and RWPE-1 cells compared with finasteride-treated groups. Expression of the angiogenesis pathway genes transforming growth factor beta 1 (TGFB1), endothelin (EDN1), TGF alpha (TGFA), and VEGFR1 was upregulated in LNCaP cells, and at least 7 out of 21 genes were upregulated in PC3 cells treated with finasteride (25 mu M). Our findings suggest that SRD5A1 expression predominates in advanced PC, and that inhibition of SRD5A1 and SRD5A2 together was more effective in reducing cell numbers than inhibition of SRD5A2 alone. However, these inhibitors did not show any significant difference in prostate cell angiogenic response. Interestingly, some angiogenic genes remained activated after treatment, possibly due to the duration of treatment and tumor resistance to inhibitors. Endocrine-Related Cancer (2010) 17 757-770

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reciprocal interaction between cancer cells and the tissue-specific stroma is critical for primary and metastatic tumor growth progression. Prostate cancer cells colonize preferentially bone (osteotropism), where they alter the physiological balance between osteoblast-mediated bone formation and osteoclast-mediated bone resorption, and elicit prevalently an osteoblastic response (osteoinduction). The molecular cues provided by osteoblasts for the survival and growth of bone metastatic prostate cancer cells are largely unknown. We exploited the sufficient divergence between human and mouse RNA sequences together with redefinition of highly species-specific gene arrays by computer-aided and experimental exclusion of cross-hybridizing oligonucleotide probes. This strategy allowed the dissection of the stroma (mouse) from the cancer cell (human) transcriptome in bone metastasis xenograft models of human osteoinductive prostate cancer cells (VCaP and C4-2B). As a result, we generated the osteoblastic bone metastasis-associated stroma transcriptome (OB-BMST). Subtraction of genes shared by inflammation, wound healing and desmoplastic responses, and by the tissue type-independent stroma responses to a variety of non-osteotropic and osteotropic primary cancers generated a curated gene signature ("Core" OB-BMST) putatively representing the bone marrow/bone-specific stroma response to prostate cancer-induced, osteoblastic bone metastasis. The expression pattern of three representative Core OB-BMST genes (PTN, EPHA3 and FSCN1) seems to confirm the bone specificity of this response. A robust induction of genes involved in osteogenesis and angiogenesis dominates both the OB-BMST and Core OB-BMST. This translates in an amplification of hematopoietic and, remarkably, prostate epithelial stem cell niche components that may function as a self-reinforcing bone metastatic niche providing a growth support specific for osteoinductive prostate cancer cells. The induction of this combinatorial stem cell niche is a novel mechanism that may also explain cancer cell osteotropism and local interference with hematopoiesis (myelophthisis). Accordingly, these stem cell niche components may represent innovative therapeutic targets and/or serum biomarkers in osteoblastic bone metastasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: We investigated the potential for improvement in disease control by use of autologous peripheral blood stem cell transplant (PBSCT) to permit administration of high activities of 186Re-hydroxyethylidene diphosphonate (HEDP) in patients with progressive hormone-refractory prostate cancer (HRPC).

Methods: Eligible patients had progressive HRPC metastatic to bone, good performance status and minimal soft tissue disease. Patients received 5,000 MBq of 186Re-HEDP i.v., followed 14 days later by PBSCT. Response was assessed using PSA, survival, pain scores and quality of life.

Results: Thirty-eight patients with a median age of 67 years (range 50–77) and a median PSA of 57 ng/ml (range 4–3,628) received a median activity of 4,978 MBq 186Re-HEDP (range 4,770–5,100 MBq). The most serious toxicity was short-lived grade 3 thrombocytopenia in 8 (21%) patients. The median survival of the group is 21 months (95%CI 18–24 months) with Kaplan-Meier estimated 1- and 2-year survival rates of 83% and 40% respectively. Thirty-one patients (81%, 95% CI 66–90%) had stable or reduced PSA levels 3 months post therapy while 11 (29%, 95% CI 15–49%) had PSA reductions of >50% lasting >4 weeks. Quality of life measures were stable or improved in 27 (66%) at 3 months.

Conclusion: We have shown that it is feasible and safe to deliver high-activity radioisotope therapy with PBSCT to men with metastatic HRPC. Response rates and survival data are encouraging; however, further research is needed to define optimal role of this treatment approach.