171 resultados para privacy protection


Relevância:

80.00% 80.00%

Publicador:

Resumo:

While video surveillance systems have become ubiquitous in our daily lives, they have introduced concerns over privacy invasion. Recent research to address these privacy issues includes a focus on privacy region protection, whereby existing video scrambling techniques are applied to specific regions of interest (ROI) in a video while the background is left unchanged. Most previous work in this area has only focussed on encrypting the sign bits of nonzero coefficients in the privacy region, which produces a relatively weak scrambling effect. In this paper, to enhance the scrambling effect for privacy protection, it is proposed to encrypt the intra prediction modes (IPM) in addition to the sign bits of nonzero coefficients (SNC) within the privacy region. A major issue with utilising encryption of IPM is that drift error is introduced outside the region of interest. Therefore, a re-encoding method, which is integrated with the encryption of IPM, is also proposed to remove drift error. Compared with a previous technique that uses encryption of IPM, the proposed re-encoding method offers savings in the bitrate overhead while completely removing the drift error. Experimental results and analysis based on H.264/AVC were carried out to verify the effectiveness of the proposed methods. In addition, a spiral binary mask mechanism is proposed that can reduce the bitrate overhead incurred by flagging the position of the privacy region. A definition of the syntax structure for the spiral binary mask is given. As a result of the proposed techniques, the privacy regions in a video sequence can be effectively protected by the enhanced scrambling effect with no drift error and a lower bitrate overhead.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

With the rapid development of internet-of-things (IoT), face scrambling has been proposed for privacy protection during IoT-targeted image/video distribution. Consequently in these IoT applications, biometric verification needs to be carried out in the scrambled domain, presenting significant challenges in face recognition. Since face models become chaotic signals after scrambling/encryption, a typical solution is to utilize traditional data-driven face recognition algorithms. While chaotic pattern recognition is still a challenging task, in this paper we propose a new ensemble approach – Many-Kernel Random Discriminant Analysis (MK-RDA) to discover discriminative patterns from chaotic signals. We also incorporate a salience-aware strategy into the proposed ensemble method to handle chaotic facial patterns in the scrambled domain, where random selections of features are made on semantic components via salience modelling. In our experiments, the proposed MK-RDA was tested rigorously on three human face datasets: the ORL face dataset, the PIE face dataset and the PUBFIG wild face dataset. The experimental results successfully demonstrate that the proposed scheme can effectively handle chaotic signals and significantly improve the recognition accuracy, making our method a promising candidate for secure biometric verification in emerging IoT applications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Privacy region protection in video surveillance systems is an active topic at present. In previous research, a binary mask mechanism has been developed to indicate the privacy region; however this incurs a significant bitrate overhead. In this paper, an adaptive binary mask is proposed to represent the privacy region. In a practical privacy region protection application, in which the privacy region typically occupies less than half of the overall frame and is rectangular or approximately rectangular, the proposed adaptive binary mask can effectively reduce the bitrate overhead. The proposed method can also be easily applied to the FMO mechanism of H.264/AVC, providing both error resilience and a lower bitrate overhead.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biometric systems provide a valuable service in helping to identify individuals from their stored personal details. Unfortunately, with the rapidly increasing use of such systems, there is a growing concern about the possible misuse of that information. To counteract the threat, the European Union (EU) has introduced comprehensive legislation that seeks to regulate data collection and help strengthen an individual’s right to privacy. This article looks at the implications of the legislation for biometric system deployment. After an initial consideration of current privacy concerns, it examines what is meant by ‘personal data’ and its protection, in legislation terms. Also covered are issues around the storage of biometric data, including its accuracy, its security, and justification for what is collected. Finally, the privacy issues are illustrated through three biometric use cases: border security, online bank access control and customer profiling in stores.