48 resultados para molecular Coulombic over barrier model
Resumo:
The identification of nonlinear dynamic systems using linear-in-the-parameters models is studied. A fast recursive algorithm (FRA) is proposed to select both the model structure and to estimate the model parameters. Unlike orthogonal least squares (OLS) method, FRA solves the least-squares problem recursively over the model order without requiring matrix decomposition. The computational complexity of both algorithms is analyzed, along with their numerical stability. The new method is shown to require much less computational effort and is also numerically more stable than OLS.
Resumo:
By molecular dynamics (MD) simulations we study the crystallization process in a model system whose particles interact by a spherical pair potential with a narrow and deep attractive well adjacent to a hard repulsive core. The phase diagram of the model displays a solid-fluid equilibrium, with a metastable fluid-fluid separation. Our computations are restricted to fairly small systems (from 2592 to 10368 particles) and cover long simulation times, with constant energy trajectories extending up to 76x10(6) MD steps. By progressively reducing the system temperature below the solid-fluid line, we first observe the metastable fluid-fluid separation, occurring readily and almost reversibly upon crossing the corresponding line in the phase diagram. The nucleation of the crystal phase takes place when the system is in the two-fluid metastable region. Analysis of the temperature dependence of the nucleation time allows us to estimate directly the nucleation free energy barrier. The results are compared with the predictions of classical nucleation theory. The critical nucleus is identified, and its structure is found to be predominantly fcc. Following nucleation, the solid phase grows steadily across the system, incorporating a large number of localized and extended defects. We discuss the relaxation processes taking place both during and after the crystallization stage. The relevance of our simulation for the kinetics of protein crystallization under normal experimental conditions is discussed. (C) 2002 American Institute of Physics.
Resumo:
Heavy particle collisions, in particular low-energy ion-atom collisions, are amenable to semiclassical JWKB phase integral analysis in the complex plane of the internuclear separation. Analytic continuation in this plane requires due attention to the Stokes phenomenon which parametrizes the physical mechanisms of curve crossing, non-crossing, the hybrid Nikitin model, rotational coupling and predissociation. Complex transition points represent adiabatic degeneracies. In the case of two or more such points, the Stokes constants may only be completely determined by resort to the so-called comparison- equation method involving, in particular, parabolic cylinder functions or Whittaker functions and their strong-coupling asymptotics. In particular, the Nikitin model is a two transition-point one-double-pole problem in each half-plane corresponding to either ingoing or outgoing waves. When the four transition points are closely clustered, new techniques are required to determine Stokes constants. However, such investigations remain incomplete, A model problem is therefore solved exactly for scattering along a one-dimensional z-axis. The energy eigenvalue is b(2)-a(2) and the potential comprises -z(2)/2 (parabolic) and -a(2) + b(2)/2z(2) (centrifugal/centripetal) components. The square of the wavenumber has in the complex z-plane, four zeros each a transition point at z = +/-a +/- ib and has a double pole at z = 0. In cases (a) and (b), a and b are real and unitarity obtains. In case (a) the reflection and transition coefficients are parametrized by exponentials when a(2) + b(2) > 1/2. In case (b) they are parametrized by trigonometrics when a(2) + b(2) <1/2 and total reflection is achievable. In case (c) a and b are complex and in general unitarity is not achieved due to loss of flux to a continuum (O'Rourke and Crothers, 1992 Proc. R. Sec. 438 1). Nevertheless, case (c) coefficients reduce to (a) or (b) under appropriate limiting conditions. Setting z = ht, with h a real constant, an attempt is made to model a two-state collision problem modelled by a pair of coupled first-order impact parameter equations and an appropriate (T) over tilde-tau relation, where (T) over tilde is the Stueckelberg variable and tau is the reduced or scaled time. The attempt fails because (T) over tilde is an odd function of tau, which is unphysical in a real collision problem. However, it is pointed out that by applying the Kummer exponential model to each half-plane (O'Rourke and Crothers 1994 J. Phys. B: At. Mel. Opt. Phys. 27 2497) the current model is in effect extended to a collision problem with four transition points and a double pole in each half-plane. Moreover, the attempt in itself is not a complete failure since it is shown that the result is a perfect diabatic inelastic collision for a traceless Hamiltonian matrix, or at least when both diagonal elements are odd and the off-diagonal elements equal and even.
Resumo:
Wideband far infrared (FIR) spectra of complex permittivity e(p) of ice are calculated in terms of a simple analytical theory based on the method of dipolar autocorrelation functions. The molecular model represents a revision of the model recently presented for liquid water in Adv. Chem. Phys. 127 (2003) 65. A composite two-fractional model is proposed. The model is characterised by three phenomenological potential wells corresponding to the three FIR bands observed in ice. The first fraction comprises dipoles reorienting in a rather narrow and deep hat-like well; these dipoles generate the librational band centred at the frequency approximate to 880 cm(-1). The second fraction comprises elastically interacting particles; they generate two nearby bands placed around frequency 200 cm(-1). For description of one of these bands the harmonic oscillator (HO) model is used, in which translational oscillations of two charged molecules along the H-bond are considered. The other band is produced by the H-bond stretch, which governs hindered rotation of a rigid dipole. Such a motion and its dielectric response are described in terms of a new cut parabolic (CP) model applicable for any vibration amplitude. The composite hat-HO-CP model results in a smooth epsilon(nu) ice spectrum, which does not resemble the noise-like spectra of ice met in the known literature. The proposed theory satisfactorily agrees with the experimental ice spectrum measured at - 7 degrees C. The calculated longitudinal optic-transverse optic (LO-TO) splitting occurring at approximate to 250 cm(-1) qualitatively agrees with the measured data. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
The carbazole moiety is a component of many important pharmaceuticals including anticancer and anti-HIV agents and is commonly utilized in the production of modern polymeric materials with novel photophysical and electronic properties. Simple carbazoles are generally produced via the aromatization of the respective tetrahydrocarbazole (THCZ). In this work, density functional theory calculations are used to model the reaction pathway of tetrahydrocarbazole aromatization over Pd(111). The geometry of each of the intermediate surface species has been determined and how each structure interacts with the metal surface addressed. The reaction energies and barriers of each of the elementary surface reactions have also been calculated, and a detailed analysis of the energetic trends performed. Our calculations have shown that the surface intermediates remain fixed to the surface via the aromatic ring in a manner similar to that of THCZ. Moreover, the aliphatic ring becomes progressively more planer with the dissociation of each subsequent hydrogen atom. Analysis of the reaction energy profile has revealed that the trend in reaction barriers is determined by the two factors: (i) the strength of the dissociating ring-H bond and (ii) the subsequent gain in energy due to the geometric relaxation of the aliphatic ring. (c) 2008 American Institute of Physics.
Resumo:
The C-H activation on metal oxides is a fundamental process in chemistry. In this paper, we report a density functional theory study on the process of the C-H activation of CH4 on Pd(111), Pt(111), Ru(0001), Tc(0001), Cu(111), PdO(001), PdO(110), and PdO(100). A linear relationship between the C-H activation barrier and the chemisorption in the dissociation final state on the metal surfaces is obtained, which is consistent with the work in the literature. However, the relationship is poor on the metal oxide surfaces. Instead, a strong linear correlation between the barrier and the lattice O-H bond strength is found on the oxides. The new linear relationship is analyzed and the physical origin is identified. (c) 2008 American Institute of Physics.
Resumo:
To study some of the interfacial properties of PtSi/Si diodes, Schottky structures were fabricated on (100) crystalline silicon substrates by conventional thermal evaporation of Pt on Si followed by annealing at different temperatures (from 400 degrees C to 700 degrees C) to form PtSi. The PtSi/n-Si diodes, all yielded Schottky barrier (SB) heights that are remarkably temperature dependent. The temperature range (20-290 K) over which the I-V characteristics were measured in the present study is broader with a much lower limit (20 K), than what is usually reported in literature. These variations in the barrier height are adequately interpreted by introducing spatial inhomogeneity into the barrier potential with a Gaussian distribution having a mean barrier of 0.76 eV and a standard deviation of 30 meV. Multi-frequency capacitance-voltage measurements suggest that the barrier is primarily controlled by the properties of the silicide-silicon interface. The forward C-V characteristics, in particular, show small peaks at low frequencies that can be ascribed to interface states rather than to a series resistance effect.
Resumo:
This paper studies a problem of dynamic pricing faced by a retailer with limited inventory, uncertain about the demand rate model, aiming to maximize expected discounted revenue over an infinite time horizon. The retailer doubts his demand model which is generated by historical data and views it as an approximation. Uncertainty in the demand rate model is represented by a notion of generalized relative entropy process, and the robust pricing problem is formulated as a two-player zero-sum stochastic differential game. The pricing policy is obtained through the Hamilton-Jacobi-Isaacs (HJI) equation. The existence and uniqueness of the solution of the HJI equation is shown and a verification theorem is proved to show that the solution of the HJI equation is indeed the value function of the pricing problem. The results are illustrated by an example with exponential nominal demand rate.
Resumo:
The extreme 3'-ends of human telomeres consist of 150–250 nucleotides of single-stranded DNA sequence together with associated proteins. Small-molecule ligands can compete with these proteins and induce a conformational change in the DNA to a four-stranded quadruplex arrangement, which is also no longer a substrate for the telomerase enzyme. The modified telomere ends provide signals to the DNA-damage-response system and trigger senescence and apoptosis. Experimental structural data are available on such quadruplex complexes comprising up to four telomeric DNA repeats, but not on longer systems that are more directly relevant to the single-stranded overhang in human cells. The present paper reports on a molecular modelling study that uses Molecular Dynamics simulation methods to build dimer and tetramer quadruplex repeats. These incorporate ligand-binding sites and are models for overhang–ligand complexes.
Resumo:
Microkinetic model is developed in the free energy landscape based on density functional theory (DFT) to quantitatively investigate the reaction mechanism of chemoselective partial hydrogenation of crotonaldehyde to crotyl alcohol over Pt(1 1 1) at the temperature of 353 K. Three different methods (mobile, immobile and collision theory models) were carried out to obtain free energy barrier of adsorption/desorption processes. The results from mobile and collision theory models are similar. The calculated TOFs from both models are close to the experiment value. However, for the immobile model, in which the free energy barrier of desorption approaches the energy barrier, the calculated TOF is 2 orders of magnitude lower than the other models. The difficulty of adsorption/ desorption may be overestimated in the immobile model. In addition, detailed analyses show that for the surface hydrogenation elementary steps, the entropy and internal energy effects are small under the reaction condition, while the zero-point-energy (ZPE) correction is significant, especially for the multi-step hydrogenation reaction. The total energy with the ZPE correction approaches to the full free energy calculation for the surface reaction under the reaction condition. (c) 2011 Elsevier B.V. All rights reserved.