91 resultados para lacrimal fluid
Resumo:
Earlier studies in adults have indicated that increased oxidative stress may occur in the blood and airways of asthmatic subjects. Therefore the aim of this study was to compare the concentrations of antioxidants and protein carbonyls in bronchoalveolar lavage fluid of clinically stable atopic asthmatic children (AA, n = 78) with our recently published reference intervals for nonasthmatic children (C, n = 124). Additionally, lipid peroxidation products (malondialdehyde) in bronchoalveolar lavage fluid and several antioxidants in plasma were determined. Bronchoalveolar lavage concentrations (median and interquartile range) of ascorbate [AA: 0.433 (0.294-0.678) versus C: 0.418 (0.253-0.646) micromol/L], urate [AA: 0.585 (0.412-0.996) versus C: 0.511 (0.372-0.687) micromol/L], alpha-tocopherol [AA: 0.025 (0.014-0.031) versus C: 0.017 (0.017-0.260) micromol/L], and oxidized proteins as reflected by protein carbonyls [AA: 1.222 (0.970-1.635) versus C: 1.243 (0.813-1.685) nmol/mg protein] were similar in both groups (p > 0.05 in all cases). The concentration of protein carbonyls correlated significantly with the number of eosinophils, mast cells, and macrophages in AA children only. Concentrations of oxidized proteins and lipid peroxidation products (malondialdehyde) correlated significantly in AA children (r = 0.614, n = 11, p = 0.044). Serum concentrations of ascorbate, urate, retinol, alpha-tocopherol, beta-carotene, and lycopene were similar in both groups whereas alpha-carotene was significantly reduced in asthmatics. Overall, increased bronchoalveolar lavage eosinophils indicate ongoing airway inflammation, which may increase oxidatively modified proteins as reflected by increased protein carbonyl concentrations.
Resumo:
There is evidence that oxidative stress plays a role in the development of chronic lung disease (CLD), with immature lungs being particularly sensitive to the injurious effect of oxygen and mechanical ventilation. We analyzed total ascorbate, urate, and protein carbonyls in 102 bronchoalveolar lavage fluid samples from 38 babies (33 preterm, 24–36 wk gestation; 5 term, 37–39 wk gestation). Preterm babies had significantly decreasing concentrations of ascorbate, urate, and protein carbonyls during the first 9 days of life (days 1–3, 4–6, and 7–9, Kruskal-Wallis ANOVA: P 5 0.016, P , 0.0001, and P 5 0.010, respectively). Preterm babies had significantly higher protein carbonyl concentrations at days 1–3 and 4–6 (P 5 0.005 and P 5 0.044) compared with term babies. Very preterm babies (24–28 wk gestation) had increased concentrations of protein carbonyls at days 4–6 (P 5 0.056) and significantly decreased ascorbate concentrations at days 4–6 (P 5 0.004) compared with preterm babies (29–36 wk gestation). Urate concentrations were significantly elevated at days 1–3 (P 5 0.023) in preterm babies who subsequently developed CLD. This study has shown the presence of oxidative stress in the lungs of preterm babies during ventilation, especially in those who subsequently developed CLD.