115 resultados para iris recognition
Resumo:
This paper argues that biometric verification evaluations can obscure vulnerabilities that increase the chances that an attacker could be falsely accepted. This can occur because existing evaluations implicitly assume that an imposter claiming a false identity would claim a random identity rather than consciously selecting a target to impersonate. This paper shows how an attacker can select a target with a similar biometric signature in order to increase their chances of false acceptance. It demonstrates this effect using a publicly available iris recognition algorithm. The evaluation shows that the system can be vulnerable to attackers targeting subjects who are enrolled with a smaller section of iris due to occlusion. The evaluation shows how the traditional DET curve analysis conceals this vulnerability. As a result, traditional analysis underestimates the importance of an existing score normalisation method for addressing occlusion. The paper concludes by evaluating how the targeted false acceptance rate increases with the number of available targets. Consistent with a previous investigation of targeted face verification performance, the experiment shows that the false acceptance rate can be modelled using the traditional FAR measure with an additional term that is proportional to the logarithm of the number of available targets.
Resumo:
This paper provides a summary of our studies on robust speech recognition based on a new statistical approach – the probabilistic union model. We consider speech recognition given that part of the acoustic features may be corrupted by noise. The union model is a method for basing the recognition on the clean part of the features, thereby reducing the effect of the noise on recognition. To this end, the union model is similar to the missing feature method. However, the two methods achieve this end through different routes. The missing feature method usually requires the identity of the noisy data for noise removal, while the union model combines the local features based on the union of random events, to reduce the dependence of the model on information about the noise. We previously investigated the applications of the union model to speech recognition involving unknown partial corruption in frequency band, in time duration, and in feature streams. Additionally, a combination of the union model with conventional noise-reduction techniques was studied, as a means of dealing with a mixture of known or trainable noise and unknown unexpected noise. In this paper, a unified review, in the context of dealing with unknown partial feature corruption, is provided into each of these applications, giving the appropriate theory and implementation algorithms, along with an experimental evaluation.
Resumo:
We present a novel approach to goal recognition based on a two-stage paradigm of graph construction and analysis. First, a graph structure called a Goal Graph is constructed to represent the observed actions, the state of the world, and the achieved goals as well as various connections between these nodes at consecutive time steps. Then, the Goal Graph is analysed at each time step to recognise those partially or fully achieved goals that are consistent with the actions observed so far. The Goal Graph analysis also reveals valid plans for the recognised goals or part of these goals. Our approach to goal recognition does not need a plan library. It does not suffer from the problems in the acquisition and hand-coding of large plan libraries, neither does it have the problems in searching the plan space of exponential size. We describe two algorithms for Goal Graph construction and analysis in this paradigm. These algorithms are both provably sound, polynomial-time, and polynomial-space. The number of goals recognised by our algorithms is usually very small after a sequence of observed actions has been processed. Thus the sequence of observed actions is well explained by the recognised goals with little ambiguity. We have evaluated these algorithms in the UNIX domain, in which excellent performance has been achieved in terms of accuracy, efficiency, and scalability.
Resumo:
The authors are concerned with the development of computer systems that are capable of using information from faces and voices to recognise people's emotions in real-life situations. The paper addresses the nature of the challenges that lie ahead, and provides an assessment of the progress that has been made in the areas of signal processing and analysis techniques (with regard to speech and face), and the psychological and linguistic analyses of emotion. Ongoing developmental work by the authors in each of these areas is described.