79 resultados para homology
Resumo:
3-Phosphoinositide-dependent protein kinase-1 (PDK1) appears to play a central regulatory role in many cell signalings between phosphoinositide-3 kinase and various intracellular serine/threonine kinases. In resting cells, PDK1 is known to be constitutively active and is further activated by tyrosine phosphorylation (Tyr(9) and Tyr(373/376)) following the treatment of the cell with insulin or pervanadate. However, little is known about the mechanisms for this additional activation of PDK1. Here, we report that the SH2 domain of Src, Crk, and GAP recognized tyrosine-phosphorylated PDK1 in vitro. Destabilization of PDK1 induced by geldanamycin (a Hsp90 inhibitor) was partially blocked in HEK 293 cells expressing PDK1- Y9F. Co-expression of Hsp90 enhanced PDK1-Src complex formation and led to further increased PDK1 activity toward PKB and SGK. Immunohistochemical analysis with anti- phospho-Tyr9 antibodies showed that the level of Tyr9 phosphorylation was markedly increased in tumor samples compared with normal. Taken together, these data suggest that phosphorylation of PDK1 on Tyr9, distinct from Tyr373/376, is important for PDK1/Src complex formation, leading to PDK1 activation. Furthermore, Tyr9 phosphorylation is critical for the stabilization of both PDK1 and the PDK1/Src complex via Hsp90-mediated protection of PDK1 degradation.
Resumo:
Traditional shell characters are insufficient to differentiate taxa within the polyplacophoran order Lepidopleurida. Additional morphological character sets from soft anatomy (e.g., gamete morphology, gill arrangement, and locations of gonopores and nephidiopores) have previously been described from only a small number of taxa. This study reports for the first time, positions of the gonopores and nephridiopores for 17 species in the Lepidopleurina. The position of both types of pores on the longitudinal body axis varies within a generalized range of the posterior third of the body; however, the separation between the pores as a proportion of the specimen’s foot length varies from 3.7% to 17% in different species. Positions of pores relative to the serial gills are also variable within species, and future studies may require a new descriptive basis in order to resolve positional homology. The order Lepidopleurida occupies a critical position with respect to understanding larger-scale patterns in polyplacophoran (and molluscan) evolution.
Resumo:
Homology modeling was used to build 3D models of the N-methyl-D-aspartate (NMDA) receptor glycine binding site on the basis of an X-ray structure of the water-soluble AMPA-sensitive receptor. The docking of agonists and antagonists to these models was used to reveal binding modes of ligands and to explain known structure-activity relationships. Two types of quantitative models, 3D-QSAR/CoMFA and a regression model based on docking energies, were built for antagonists (derivatives of 4-hydroxy-2-quinolone, quinoxaline-2,3-dione, and related compounds). The CoMFA steric and electrostatic maps were superimposed on the homology-based model, and a close correspondence was marked. The derived computational models have permitted the evaluation of the structural features crucial for high glycine binding site affinity and are important for the design of new ligands.
Resumo:
IQGAPs are cytoskeletal scaffolding proteins which collect information from a variety of signalling pathways and pass it on to the microfilaments and microtubules. There is a well-characterised interaction between IQGAP and calmodulin through a series of IQ-motifs towards the middle of the primary sequence. However, it has been shown previously that the calponin homology domain (CHD), located at the N-terminus of the protein, can also interact weakly with calmodulin. Using a recombinant fragment of human IQGAP1 which encompasses the CHD, we have demonstrated that the CHD undergoes a calcium ion-dependent interaction with calmodulin. The CHD can also displace the hydrophobic fluorescent probe 1-anilinonaphthalene-8-sulphonate from calcium-calmodulin, suggesting that the interaction involves non-polar residues on the surface of calmodulin. Molecular modelling identified a possible site on the CHD for calmodulin interaction. The physiological significance of this interaction remains to be discovered.
Resumo:
Let L be a unital Z-graded ring, and let C be a bounded chain complex of finitely generated L-modules. We give a homological characterisation of when C is homotopy equivalent to a bounded complex of finitely generated projective L0-modules, generalising known results for twisted Laurent polynomial rings. The crucial hypothesis is that L is a strongly graded ring.
Resumo:
A total synthesis of phomactin G (3), which is a central intermediate in the biosynthesis of phomactin A (5) in Phoma sp. is described. The synthesis is based on a Cr(II)/Ni(II) macrocyclisation from the aldehyde vinyl iodide 9, leading to 16, followed by sequential conversion of 16 into the -epoxide 21 and the ketone 25 which, on deprotection, led to (±)-phomactin G. Phomactin G (3) shares an interesting structural homology with phomactin D (2), the most potent PAF-antagonist metabolite in Phoma sp. It is most likely converted into phomactin A (5), by initial allylic oxidation to the transient -alcohol phomactin structure 4, known as Sch 49028, followed by spontaneous pyran ring formation.
Resumo:
A novel coronavirus has been identified as the causative agent of severe acute respiratory syndrome (SARS). The viral main proteinase (Mpro, also called 3CLpro), which controls the activities of the coronavirus replication complex, is an attractive target for therapy. We determined crystal structures for human coronavirus (strain 229E) Mpro and for an inhibitor complex of porcine coronavirus [transmissible gastroenteritis virus (TGEV)] Mpro, and we constructed a homology model for SARS coronavirus (SARS-CoV) Mpro. The structures reveal a remarkable degree of conservation of the substrate-binding sites, which is further supported by recombinant SARS-CoV Mpro-mediated cleavage of a TGEV Mpro substrate. Molecular modeling suggests that available rhinovirus 3Cpro inhibitors may be modified to make them useful for treating SARS.
Resumo:
Gentisate-1,2-dioxygenase genes (gdoA), with homology to a number of bacterial dioxygenases, and genes encoding a putative coenzyme A (CoA)-synthetase subunit (acdB) and a CoA-thioesterase (tieA) were identified in two haloarchaeal isolates. In Haloarcula sp. D1, gdoA was expressed during growth on 4-hydroxybenzoate but not benzoate, and acdB and tieA were not expressed during growth on any of the aromatic substrates tested. In contrast, gdoA was expressed in Haloferax sp. D1227 during growth on benzoate, 3-hydroxybenzoate, cinnamate and phenylpropionate, and both acdB and tieA were expressed during growth on benzoate, cinnamate and phenylpropionate, but not on 3-hydroxybenzoate. This pattern of induction is consistent with these genes encoding steps in a CoA-mediated benzoate pathway in this strain.
Resumo:
Previous studies have identified the DUB family of cytokine-regulated murine deubiquitinating enzymes, which play a role in the control of cell proliferation and survival. Through data base analyses and cloning, we have identified a human cDNA (DUB-3) that shows significant homology to the known murine DUB family members. Northern blotting has shown expression of this gene in a number of tissues including brain, liver, and muscle, with two transcripts being apparent (1.6 and 1.7 kb). In addition, expression was observed in cell lines including those derived from a number of hematopoietic tumors such as the Burkitt's lymphoma cell line RAJI. We have also demonstrated that DUB-3, which was shown to be an active deubiquitinating enzyme, is induced in response to interleukin-4 and interleukin-6 stimulation. Finally, we have demonstrated that constitutive expression of DUB-3 blocks proliferation and can initiate apoptosis in both IL-3-dependent Ba/F3 cells and NIH3T3 fibroblasts. These findings suggest that human DUB-3, like the murine DUB family members, is transiently induced in response to cytokines and can, when constitutively expressed, block growth factor-dependent proliferation.
Resumo:
Calmodulin is a calcium ion-sensing signalling protein found in eukaryotics. Two calmodulin-like gene sequences were identified in an EST library from adult liver flukes. One codes for a protein (FhCaM1) homologous to mammalian calmodulins (98% identity), whereas the other protein (FhCaM2) has only 41% identity. These genes were cloned into expression vectors and the recombinant proteins were expressed in Escherichia coli. Gel shift assays showed that both proteins bind to calcium, magnesium and zinc ions. Homology models have been built for both proteins. As expected, FhCaM1 has a highly similar structure to other calmodulins. Although FhCaM2 has a similar fold, its surface charge is higher than FhCaM1. One of the potential metal ion-binding sites has lower metal-ion co-ordination capability, while another has an adjacent lysine residue, both of which may decrease the metal-binding affinity. These differences may reflect a specialised role for FhCaM2 in the liver fluke.
Resumo:
Background: DNA ligases catalyse phosphodiester bond formation between adjacent bases in nicked DNA, thereby sealing the nick. A key step in the catalytic mechanism is the formation of an adenylated DNA intermediate. The adenyl group is derived from either ATP (in eucaryotes and archaea) or NAD+4 (in bacteria). This difference in cofactor specificity suggests that DNA ligase may be a useful antibiotic target.
Results: The crystal structure of the adenylation domain of the NAD+-dependent DNA ligase from Bacillus stearothermophilus has been determined at 2.8 Å resolution. Despite a complete lack of detectable sequence similarity, the fold of the central core of this domain shares homology with the equivalent region of ATP-dependent DNA ligases, providing strong evidence for the location of the NAD+-binding site.
Conclusions: Comparison of the structure of the NAD+4-dependent DNA ligase with that of ATP-dependent ligases and mRNA-capping enzymes demonstrates the manifold utilisation of a conserved nucleotidyltransferase domain within this family of enzymes. Whilst this conserved core domain retains a common mode of nucleotide binding and activation, it is the additional domains at the N terminus and/or the C terminus that provide the alternative specificities and functionalities in the different members of this enzyme superfamily.
Resumo:
Human cathepsin L along with cathepsin S, K, and V are collectively known as cathepsin L-like proteases due to their high homology. The overexpression and aberrant activity of each of these proteases has been implicated in tumorigenesis. These proteases contain propeptide domains that can potently inhibit both their cognate protease and other proteases within the cathepsin L-like subfamily. In this investigation, we have produced the cathepsin S propeptide recombinantly and have shown that it is a potent inhibitor of the peptidolytic, elastinolytic, and gelatinolytic activities of the cathepsin L-like proteases. In addition, we show that this peptide is capable of significantly attenuating tumor cell invasion in a panel of human cancer cell lines. Furthermore, fusion of an IgG Fc-domain to the COOH terminus of the propeptide resulted in a chimeric protein with significantly enhanced ability to block tumor cell invasion. This Fc fusion protein exhibited enhanced stability in cell-based assays in comparison with the unmodified propeptide species. This approach for the combined inhibition of the cathepsin L-like proteases may prove useful for the further study in cancer and other conditions where their aberrant activity has been implicated. Furthermore, this strategy for simultaneous inhibition of multiple cysteine cathepsins may represent the basis for novel therapeutics to attenuate tumorigenesis.