91 resultados para histamine liberation
Resumo:
Background
Metachromatic cells obtained from asthmatic subjects demonstrate increased spontaneous and stimulated histamine release in vitro. Their ability to synthesize and store proinflammatory cytokines has focused renewed interest on their role in asthma.
Objective: The late asthmatic response provides a useful model of clinical asthma. The aim of the study was to examine metachromatic cell derived mediators and histamine releasability in vitro after in vivo allergen exposure in atopic subjects with and without asthma and relate them to the type of physiological response observed.
Methods: Bronchoalveolar lavage (BAL) cells were obtained 4 h after challenge from asthmatics exhibiting a single early response (EAR, n = 5), a dual response (LAR, n = 7), unchallenged (basal, n = 5), atopic non-asthmatic (ANA, n = 6) and non-atopic non-asthmatics (normal, n = 5). BAL histamine and tryptase concentrations and in vitro histamine release (HR) after stimulation with anti-IgE, allergen, A23187, conconavalin A and substance P were compared.
Results:Metachromatic cell numbers were lower in normal controls compared with all asthmatic groups and in LAR compared with EAR. Metachromatic cell derived mediators were higher in asthmatic compared with normal subjects. Spontaneous HR in LAR (20.5 ± 5.0%) was lower than EAR (29.5 ± 3.9%) and ANA (30.2 ± 1.4%) (P < 0.05). No differences were seen in stimulated HR between EAR and LAR. HR in ANA stimulated with anti-IgE was greater than LAR (P < 0.05). HR in ANA stimulated with anti-IgE was greater than LAR (P < 0.05). After stimulation with ionophore A23187 (1 μM), release was greater in LAR compared with basal (P < 0.05) and no different at 5 μM. All subject groups responded to substance P (SP) but was significantly more in the asthmatic subjects compared to normal controls (P < 0.05). Allergen challenge did not modify the response of asthmatic subjects to SP.
Conclusion: Functional differences in metachromatic cell reactivity are present in atopic subjects 4 h after in vivo allergen exposure which relate to the physiological response observed after this time and suggest that there is ongoing metachromatic cell degranulation subjects who subsequently develop LAR.
Resumo:
Intravascular application of goat anti-rabbit immunoglobulin E (IgE) was used to stimulate parenchymal mast cells in situ in perfused rabbit lungs. Sustained pulmonary arterial pressure rise was evoked in the absence of lung vascular permeability increase and lung edema formation. Early prostaglandin (PG) D2 and histamine release into the perfusate was documented, accompanied by more sustained liberation of cysteinyl leukotrienes (LT), LTB4, and PGI2. The quantities of these inflammatory mediators displayed the following order: histamine > cysteinyl-LT > PGI2 > LTB4 > PGD2. Pressor response and inflammatory mediator release revealed corresponding bell-shaped dose dependencies. Cyclooxygenase inhibition (acetylsalicylic acid) suppressed prostanoid generation, increased LT release, and did not substantially affect pressor response and histamine liberation. BW755 C, a cyclo- and lipoxygenase inhibitor, blocked the release of cysteinyl-LT and markedly reduced the liberation of the other inflammatory mediators as well as the pressor response. The H-1-antagonist clemastine caused a moderate reduction of the anti-IgE-provoked pressure rise. We conclude that intravascular anti-IgE challenge in intact lungs provokes the release of an inflammatory mediator profile compatible with in situ lung parenchymal mast cell activation. Pulmonary hypertension represents the predominant vascular response, presumably mediated by cysteinyl-LT and, to a minor extent, histamine liberation.
Resumo:
BACKGROUND: Sensory neuropeptides have been suggested to play a role in the pathogenesis of a number of respiratory diseases including asthma and chronic non-productive cough.
OBJECTIVES: To investigate the action of sensory neuropeptides on airway mast cells obtained by bronchoalveolar lavage (BAL).
METHODS: BAL was performed on 23 nonasthmatic patients with cough (NAC), 11 patients with cough variant asthma (CVA) and 10 nonatopic controls. Washed lavage cells were stimulated (20 min, 37 degrees C) with calcitonin gene-related peptide (CGRP), neurokinin A (NKA) and substance P (25 and 50 micromol/L).
RESULTS: The neuropeptides tested induced histamine release in all groups studied. Only CGRP (50 micromol/L) induced significantly more histamine release from both NAC and CVA patients compared with control subjects (P = 0.038 and 0.045, respectively).
CONCLUSION: Regardless of aetiology, mast cells from patients with chronic cough appear to have an increased responsiveness to CGRP compared with controls. The results of the present study suggest that the role of CGRP in chronic cough should be further investigated.
Resumo:
Amphibian defensive skin secretions remain a largely untapped resource for the peptide biochemist with an interest in the identification, structural characterization, and precursor cDNA cloning of novel bioactive peptides. Here we report the isolation, structural characterization, functional profiling, and nucleotide sequence of precursor cDNA of a novel histamine-releasing heptadecapeptide, FIPVTLLALHKIKEKLN-amide, from the defensive skin secretion of the African running frog, Kassina senegalensis. This peptide was found to be a potent histamine secretagogue (EC[5][0]=6 µM; maximal release = 25 µM) in a rat peritoneal mast cell model system and was accordingly named kassinakinin S. The open-reading frame of the cDNA encoding prepro-kassinakinin S was found to consist of 71 amino acid residues containing a single copy of kassinakinin S and its glycyl residue amide donor at the C-terminus. Kassinakinin S can thus be added to the growing list of amphibian skin bioactive peptide prototypes.
Resumo:
Previous studies have shown that in vitro adenosine enhances histamine release from activated human lung mast cells obtained by enzymic dispersion of lung parenchyma. However, adenosine alone has no effect on histamine release from these cells. Given the evidence for direct activation of mast cells after endobronchial challenge with adenosine and previous studies indicating that mast cells obtained at bronchoalveolar lavage are a better model for asthma studies than those obtained by enzymic dispersion of lung tissue, the histamine-releasing effect of adenosine was examined on lavage mast cells. Bronchoalveolar lavage fluid was obtained from patients attending hospital for routine bronchoscopy (n = 54). Lavage cells were challenged with adenosine or adenosine receptor agonists (20 min, 37 degrees C) and histamine release determined using an automated fluorometric assay. Endogenous adenosine levels were also measured in lavage fluid (n = 9) via an HPLC method. Adenosine alone caused histamine release from ravage mast cells in 37 of 54 patients with a maximal histamine release of 20.56 +/- 2.52% (range 5.2-61 %). The adenosine receptor agonists (R)-N-6-(2-phenylisopropyl)adenosine, 5'-N-ethylcarboxamido-adenosine and CGS21680 also induced histamine release from lavage mast cells. Preincubation of lavage mast cells with the adenosine receptor antagonist xanthine amine congener caused significant inhibition of the response to adenosine (P = 0.007). There was an inverse correlation between endogenous adenosine levels in the lavage fluid and the maximal response to in vitro adenosine challenge of the lavage cells. The findings of the present study indicate a means by which adenosine challenge of the airways can induce bronchoconstriction and support a role for adenosine in the pathophysiology of asthma. The results also suggest that cells obtained from bronchoalveolar ravage fluid may provide the ideal model for the testing of novel, adenosine receptor, targeted therapies for asthma.
Resumo:
Substance P elicits histamine release from human skin and rodent mast cells. Since neuropeptide-mediated reflexes may be important in asthma, we examined the ability of substance P to stimulate human mast cells obtained at bronchoalveolar lavage (BAL). BAL samples were obtained at routine bronchoscopy from 35 non-preselected patients. Histamine release experiments were performed in a standard manner using substance P and the calcium ionophore A23187. Both substance P (50 μM) and A23187 caused histamine release (median 26.7%, range 6.2–62.8% and 32.1%, 7.7–56.8% respectively) which was significantly greater (P < 0.0001) than the spontaneous release (median 15.6%, range 4.1–33.4%), i.e. that in the absence of any stimulus. Substance P induced histamine release was via an energy dependent process and was blocked by preincubation with antimycin A. A significant correlation was observed between substance P induced release and spontaneous release but was not observed with A23187 induced release. Mast cell counts correlated significantly with substance P induced release but not with spontaneous or A23187 induced release. The substance P induced histamine secretion was elicited at similar concentrations to those used with rodent and human skin mast cells. Asthma is associated with increased numbers of mast cells which have both increased spontaneous and stimulated secretory responses. Thus, in vivo, the bronchoconstrictor action of substance P may in part result from activation of mast cells in the bronchial lumen.