9 resultados para hematopoietic stem cells


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present paper, we report on the use of the heteroduplex PCR technique to detect the presence of clonally rearranged VDJ segments of the heavy chain immunoglobulin gene (VDJH) in the apheresis products of patients with multiple myeloma (MM) undergoing autologous peripheral blood stem cell (APBSC) transplantation. Twenty-three out of 31 MM patients undergoing APBSC transplantation with VDJH segments clonally rearranged detected at diagnosis were included in the study. Samples of the apheresis products were PCR amplified using JH and VH (FRIII and FRII) consensus primers and subsequently analyzed with the heteroduplex technique, and compared with those obtained at diagnosis. 52% of cases yielded positive results (presence of clonally rearranged VDJH segments in at least one apheresis). The presence of positive results in the apheresis products was not related to any pretransplant characteristics with the exception of response status at transplant. Thus, while no one patient with positive apheresis products was in complete remission (CR), negative immunofixation, before the transplant, five cases (46%) with negative apheresis were already in CR at transplant (P = 0.01). The remaining six cases with heteroduplex PCR negative apheresis were in partial remission before transplant. Patients with clonally free products were more likely to obtain CR following transplant (64% vs 17%, P= 0.02) and a longer progression-free survival, (40 months in patients transplanted with polyclonal products vs 20 with monoclonal ones, P = 0.03). These results were consistent when the overall survival was considered, since it was better in those patients with negative apheresis than it was in those with positive (83% vs 36% at 5 years from diagnosis, P= 0.01). These findings indicate that the presence of clonality rearranged VDJH segments is related to the response and outcome in MM transplanted patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

FKBPL and its peptide derivative, AD-01, have already demonstrated well-established inhibitory effects on breast cancer growth and CD44 dependent anti-angiogenic activity1, 2, 3. Since breast cancer stem cells (BCSCs) are CD44 positive, we wanted to explore if AD-01 could specifically target BCSCs. FKBPL stable overexpression or AD-01 treatment were highly effective at reducing the BCSC population measured by inhibiting mammosphere forming efficiency (MFE) in cell lines and primary breast cancer samples from both solid breast tumours and pleural effusions. Flow cytometry, to assess the ESA+/CD44+/CD24- subpopulation, validated these results. The ability of AD-01 to inhibit the self-renewal capacity of BCSCs was confirmed across three generations of mammospheres, where mammospheres were completely eradicated by the third generation (p<0.001). Clonogenic assays suggested that AD-01 mediated BCSC differentiation, with a significant decrease in the number of holoclones and an associated increase in meroclones/paraclones. In support of this, the stem cell markers, Nanog and Oct4 were significantly reduced following AD-01 treatment, whilst transfection of FKBPL-targeted siRNAs led to an increase in these markers and in mammosphere forming potential, highlighting the endogenous role of FKBPL in stem cell signalling. The clinical relevance of this was confirmed using a publically available microarray data set (GSE7390), where, high FKBPL and low Nanog expression were independently associated with improved overall survival in breast cancer patients (log rank test p=0.03; hazard ratio=3.01). When AD-01 was combined with other agents, we observed synergistic activity with the Notch inhibitor, DAPT and AD-01 was also able to abrogate a chemo- and radiotherapy induced enrichment in BCSCs. Importantly, using ‘gold standard’ in vivo limiting dilution assays we demonstrated a delay in tumour initiation and reoccurrence in AD-01 treated xenografts. In summary, AD-01 appears to have dual anti-angiogenic and anti-BCSC activity which will be advantageous as this agent enters clinical trial.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

FKBPL and its peptide derivatives have already demonstrated well-established inhibitory effects on cancer growth and CD44-dependent anti-angiogenic activity. Since cancer stem cells (CSCs) are CD44 positive, we wanted to explore if these therapeutics could specifically target CSCs in breast and ovarian cancer. In a tumoursphere assay, FKBPL stable overexpression or FKBPL-based peptide (AD-01, preclinical peptide or ALM201, clinical peptide candidate) treatment were highly effective at reducing the CSC population measured by inhibiting tumoursphere forming efficiency in breast and ovarian cancer cell lines and primary breast cancer samples from both solid breast tumours and pleural effusions. Flow cytometry, to assess the ESA+/CD44+/CD24- and ALDH+ cell subpopulations representative of CSCs, validated these results. The ability of AD-01 and ALM201 to inhibit the self-renewal capacity of CSCs was confirmed across three generations, eradicating CSC completely by the third generation (p<0.001). Furthermore, clonogenic assay demonstrated that FKBPL-based peptides mediated CSC differentiation, with a significant decrease in the number of CSCs or holoclones and an associated increase in differentiated cancer cells or meroclones/paraclones. In addition, AD-01 treatment in vitro and in vivo led to a significant reduction in the stem cell markers, Nanog, Sox2 and Oct4 protein and mRNA levels; whilst transfection of FKBPL-targeted siRNAs led to an increase in these markers and in tumoursphere forming potential, highlighting the endogenous role of FKBPL in stem cell signalling. The clinical relevance of this was confirmed using a publically available microarray data set (GSE7390), where, high FKBPL and low Nanog expression were independently associated with improved overall survival in breast cancer patients (log rank test p=0.03; hazard ratio=3.01). Additionally, when AD-01 was combined with other agents, we observed additive activity with the Notch inhibitor, DAPT and AD-01 was also able to abrogate a chemo- and radiotherapy induced enrichment in CSCs. Importantly, using gold standard in vivo limiting dilution assays we demonstrated a delay in tumour initiation and reoccurrence in AD-01 treated xenografts. In summary, FKBPL-based peptides appear to have dual anti-angiogenic and anti-CSC activity which will be advantageous as this agent enters clinical trial.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The splicing factor SF3B1 is the most frequently mutated gene in myelodysplastic syndromes (MDS), and is strongly associated with the presence of ring sideroblasts (RS). We have performed a systematic analysis of cryptic splicing abnormalities from RNA sequencing data on hematopoietic stem cells (HSCs) of SF3B1-mutant MDS cases with RS. Aberrant splicing events in many downstream target genes were identified and cryptic 3' splice site usage was a frequent event in SF3B1-mutant MDS. The iron transporter ABCB7 is a well-recognized candidate gene showing marked downregulation in MDS with RS. Our analysis unveiled aberrant ABCB7 splicing, due to usage of an alternative 3' splice site in MDS patient samples, giving rise to a premature termination codon in the ABCB7 mRNA. Treatment of cultured SF3B1-mutant MDS erythroblasts and a CRISPR/Cas9-generated SF3B1-mutant cell line with the nonsense-mediated decay (NMD) inhibitor cycloheximide showed that the aberrantly spliced ABCB7 transcript is targeted by NMD. We describe cryptic splicing events in the HSCs of SF3B1-mutant MDS, and our data support a model in which NMD-induced downregulation of the iron exporter ABCB7 mRNA transcript resulting from aberrant splicing caused by mutant SF3B1 underlies the increased mitochondrial iron accumulation found in MDS patients with RS.Leukemia advance online publication, 17 June 2016; doi:10.1038/leu.2016.149.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Contaminating tumour cells in apheresis products have proved to influence the outcome of patients with multiple myeloma (MM) undergoing autologous stem cell transplantation (APBSCT). The gene scanning of clonally rearranged VDJ segments of the heavy chain immunoglobulin gene (VDJH) is a reproducible and easy to perform technique that can be optimised for clinical laboratories. We used it to analyse the aphereses of 27 MM patients undergoing APBSCT with clonally detectable VDJH segments, and 14 of them yielded monoclonal peaks in at least one apheresis product. The presence of positive results was not related to any pre-transplant characteristics, except the age at diagnosis (lower in patients with negative products, P = 0.04). Moreover, a better pre-transplant response trended to associate with a negative result (P = 0.069). Patients with clonally free products were more likely to obtain a better response to transplant (complete remission, 54% vs 28%; >90% reduction in the M-component, 93% vs 43% P = 0.028). In addition, patients transplanted with polyclonal products had longer progression-free survival, (39 vs 19 months, P = 0.037) and overall survival (81% vs 28% at 5 years, P = 0.045) than those transplanted with monoclonal apheresis. In summary, the gene scanning of apheresis products is a useful and clinically relevant technique in MM transplanted patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Hematopoietic stem cell renewal and differentiation are regulated through epigenetic processes. The conversion of 5-methylcytosine into 5-hydroxymethylcytosine (5hmC) by ten-eleven-translocation enzymes provides new insights into the epigenetic regulation of gene expression during development. Here, we studied the potential gene regulatory role of 5hmC during human hematopoiesis.

RESULTS: We used reduced representation of 5-hydroxymethylcytosine profiling (RRHP) to characterize 5hmC distribution in CD34+ cells, CD4+ T cells, CD19+ B cells, CD14+ monocytes and granulocytes. In all analyzed blood cell types, the presence of 5hmC at gene bodies correlates positively with gene expression, and highest 5hmC levels are found around transcription start sites of highly expressed genes. In CD34+ cells, 5hmC primes for the expression of genes regulating myeloid and lymphoid lineage commitment. Throughout blood cell differentiation, intragenic 5hmC is maintained at genes that are highly expressed and required for acquisition of the mature blood cell phenotype. Moreover, in CD34+ cells, the presence of 5hmC at enhancers associates with increased binding of RUNX1 and FLI1, transcription factors essential for hematopoiesis.

CONCLUSIONS: Our study provides a comprehensive genome-wide overview of 5hmC distribution in human hematopoietic cells and new insights into the epigenetic regulation of gene expression during human hematopoiesis.