61 resultados para heat and mass transfer
Resumo:
A dynamic mathematical model for simulating the coupled heat and moisture migration through multilayer porous building materials was proposed. Vapor content and temperature were chosen as the principal driving potentials. The discretization of the governing equations was done by the finite difference approach. A new experimental set-up was also developed in this study. The evolution of transient temperature and moisture distributions inside specimens were measured. The method for determining the temperature gradient coefficient was also presented. The moisture diffusion coefficient, temperature gradient coefficient, sorption–desorption isotherms were experimentally evaluated for some building materials (sandstone and lime-cement mortar). The model was validated by comparing with the experimental data with good agreement. Another advantage of the method lies in the fact that the required transport properties for predicting the non-isothermal moisture flow only contain the vapor diffusion coefficient and temperature gradient coefficient. They are relatively simple, and can be easily determined.
Resumo:
The simultaneous heat and moisture transfer in the building envelope has an important influence on the indoor environment and the overall performance of buildings. In this paper, a model for predicting whole building heat and moisture transfer was presented. Both heat and moisture transfer in the building envelope and indoor air were simultaneously considered; their interactions were modeled. The coupled model takes into account most of the main hygrothermal effects in buildings. The coupled system model was implemented in MATLAB-Simulink, and validated by using a series of published testing tools. The new program was applied to investigate the moisture transfer effect on indoor air humidity and building energy consumption under different climates. The results show that the use of more detailed simulation routines can result in improvements to the building's design for energy optimisation through the choice of proper hygroscopic materials, which would not be indicated by simpler calculation techniques.
Resumo:
Tubers of two cultivars (Estima and Maris Piper) of potato were cooked by three different procedures, ie boiling, conventional baking and microwave baking. Peeled and sliced tubers were boiled, while intact potatoes were baked in their skins. Flavour components from the boiled slices and the flesh of the baked tubers were isolated by headspace adsorption onto Tenax and analysed by gas chromatography-mass spectrometry (GC-MS). For all cooking procedures, Estima gave stronger isolates than Maris Piper. The two main sources of flavour compounds (regardless of cooking procedure) were lipid degradation and the Maillard reaction and/or sugar degradation. The ratio (yield derived from lipid)/(yield derived from Maillard reaction and/or sugar) decreased from 8.5-9.1 (boiling) to 2.7-3.4 (microwave baking) and to 0.4-1.1 (conventional baking). Quantitative and qualitative differences among the cooking procedures are explained in terms of the variations in heat and mass transfer processes that occurred. Each cooking procedure resulted in a unique profile of flavour compounds. (C) 2002 Society of Chemical Industry.
Resumo:
Present work examines numerically the asymmetric behavior of hydrogen/air flame in a micro-channel subjected to a non-uniform wall temperature distribution. A high resolution (with cell size of 25 μm × 25 μm) of two-dimensional transient Navier–Stokes simulation is conducted in the low-Mach number formulation using detailed chemistry evolving 9 chemical species and 21 elementary reactions. Firstly, effects of hydrodynamic and diffusive-thermal instabilities are studied by performing the computations for different Lewis numbers. Then, the effects of preferential diffusion of heat and mass transfer on the asymmetric behavior of the hydrogen flame are analyzed for different inlet velocities and equivalence ratios. Results show that for the flames in micro-channels, interactions between thermal diffusion and molecular diffusion play major role in evolution of a symmetric flame into an asymmetric one. Furthermore, the role of Darrieus–Landau instability found to be minor. It is also found that in symmetric flames, the Lewis number decreases behind the flame front. This is related to the curvature of flame which leads to the inclination of thermal and mass fluxes. The mass diffusion vectors point toward the walls and the thermal diffusion vectors point toward the centerline. Asymmetric flame is observed when the length of flame front is about 1.1–1.15 times of the channel width.
Resumo:
Forced convection heat transfer in a micro-channel filled with a porous material saturated with rarefied gas with internal heat generation is studied analytically in this work. The study is performed by analysing the boundary conditions for constant wall heat flux under local thermal non-equilibrium (LTNE) conditions. Invoking the velocity slip and temperature jump, the thermal behaviour of the porous-fluid system is studied by considering thermally and hydrodynamically fully-developed conditions. The flow inside the porous material is modelled by the Darcy–Brinkman equation. Exact solutions are obtained for both the fluid and solid temperature distributions for two primary approaches models A and B using constant wall heat flux boundary conditions. The temperature distributions and Nusselt numbers for models A and B are compared, and the limiting cases resulting in the convergence or divergence of the two models are also discussed. The effects of pertinent parameters such as fluid to solid effective thermal conductivity ratio, Biot number, Darcy number, velocity slip and temperature jump coefficients, and fluid and solid internal heat generations are also discussed. The results indicate that the Nusselt number decreases with the increase of thermal conductivity ratio for both models. This contrasts results from previous studies which for model A reported that the Nusselt number increases with the increase of thermal conductivity ratio. The Biot number and thermal conductivity ratio are found to have substantial effects on the role of temperature jump coefficient in controlling the Nusselt number for models A and B. The Nusselt numbers calculated using model A change drastically with the variation of solid internal heat generation. In contrast, the Nusselt numbers obtained for model B show a weak dependency on the variation of internal heat generation. The velocity slip coefficient has no noticeable effect on the Nusselt numbers for both models. The difference between the Nusselt numbers calculated using the two models decreases with an increase of the temperature jump coefficient.
Resumo:
This paper describes the detailed validation of a computer model designed to simulate the transient light-off in a two-stroke oxidation catalyst. A plug flow reactor is employed to provide measurements of temperature and gas concentration at various radial and axial locations inside the catalyst. These measurements are recorded at discrete intervals during a transient light-off in which the inlet temperature is increased from ambient to 300oC at rates of up to 6oC/sec. The catalyst formulation used in the flow reactor, and its associated test procedures, are then simulated by the computer and a comparison made between experimental readings and model predictions. The design of the computer model to which this validation exercise relates is described in detail in a separate technical paper. The first section of the paper investigates the warm-up characteristics of the substrate and examines the validity of the heat transfer predictions between the wall and the gas in the absence of chemical reactions. The predictions from a typical single-component CO transient light-off test are discussed in the second section and are compared with experimental data. In particular the effect of the temperature ramp on the light-off curve and reaction zone development is examined. An analysis of the C3H6 conversion is given in the third section while the final section examines the accuracy of the light-off curves which are produced when both CO and C3H6 are present in the feed gas. The analysis shows that the heat and mass transfer calculations provided reliable predictions of the warm-up behaviour and post light-off gas concentration profiles. The self-inhibition and cross-inhibition terms in the global rate expressions were also found to be reasonably reliable although the surface reaction rates required calibration with experimental data.