74 resultados para geostationary orbit
Resumo:
We present the results of BVRIZ photometry of 56 near-Earth objects (NEOs) obtained with the 1-m Jacobus Kapteyn telescope on La Palma during 2000 and 2001. Our sample includes many NEOs with particularly deep 1 - mum pyroxene/olivine absorption bands, similar to Q-type asteroids. We also classify three NEOs with particularly blue colors. No D-type asteroids were found, placing an upper limit of similar to2% on the fraction of the NEO population originating in the outer main belt or the Trojan clouds. The ratio of dark to bright objects in our sample was found to be 0.40, significantly higher than current theoretical predictions. As well as classifying the NEOs, we have investigated color trends with size and orbit. We see a general trend for larger silicate objects to have shallower absorption bands but find no significant difference in the distribution of taxonomic classes at small and large sizes. Our data clearly show that different taxonomic classes tend to occupy different regions of (a, e) space. By comparing our data with current model predictions for NEO dynamical evolution we see that Q- R-, and V-type NEOs tend to have orbits associated with "fast track" delivery from the main belt, whereas S-type NEOs tend to have orbits associated with "slow track" delivery. This outcome would be expected if space weathering occurs on time scales of >10(6) years. (C) 2003 Elsevier Science (USA). All rights reserved.
Resumo:
We report the discovery of a 7.3 M-J exoplanet WASP-14b, one of the most massive transiting exoplanets observed to date. The planet orbits the 10th-magnitude F5V star USNO-B1 11118-0262485 with a period of 2.243 752 d and orbital eccentricity e = 0.09. A simultaneous fit of the transit light curve and radial velocity measurements yields a planetary mass of 7.3 +/- 0.5 M-J and a radius of 1.28 +/- 0.08 R-J. This leads to a mean density of about 4.6 g cm(-3) making it the densest transiting exoplanets yet found at an orbital period less than 3 d. We estimate this system to be at a distance of 160 +/- 20 pc. Spectral analysis of the host star reveals a temperature of 6475 +/- 100 K, log g = 4.07 cm s(-2) and v sin i = 4.9 +/- 1.0 km s(-1), and also a high lithium abundance, log N(Li) = 2.84 +/- 0.05. The stellar density, effective temperature and rotation rate suggest an age for the system of about 0.5-1.0 Gyr.
Resumo:
We report the discovery of the transiting giant planet WASP-17b, the least-dense planet currently known. It is 1.6 Saturn masses, but 1.5-2 Jupiter radii, giving a density of 6%-14% that of Jupiter. WASP-17b is in a 3.7 day orbit around a sub-solar metallicity, V = 11.6, F6 star. Preliminary detection of the Rossiter-McLaughlin effect suggests that WASP-17b is in a retrograde orbit (? ˜ -150°), indicative of a violent history involving planet-planet or star-planet scattering. WASP-17b's bloated radius could be due to tidal heating resulting from recent or ongoing tidal circularization of an eccentric orbit, such as the highly eccentric orbits that typically result from scattering interactions. It will thus be important to determine more precisely the current orbital eccentricity by further high-precision radial velocity measurements or by timing the secondary eclipse, both to reduce the uncertainty on the planet's radius and to test tidal-heating models. Owing to its low surface gravity, WASP-17b's atmosphere has the largest scale height of any known planet, making it a good target for transmission spectroscopy.
Resumo:
We present an observation of the Rossiter-McLaughlin effect for the planetary system WASP-3. Radial velocity measurements were made during transit using the SOPHIE spectrograph at the 1.93-m telescope at Haute-Provence Observatory. The shape of the effect shows that the sky-projected angle between the stellar rotation axis and planetary orbital axis (?) is small and consistent with zero within . WASP-3b joins the ~two-thirds of planets with measured spin-orbit angles that are well aligned and are thought to have undergone a dynamically gentle migration process such as planet-disc interactions. We find a systematic effect which leads to an anomalously high determination of the projected stellar rotational velocity (vsini = 19.6+2.2-2.1kms-1) compared to the value found from spectroscopic line broadening (vsini = 13.4 +/- 1.5kms-1). This is thought to be caused by a discrepancy in the assumptions made in the extraction and modelling of the data. Using a model developed by Hirano et al. designed to address this issue, we find vsini to be consistent with the value obtained from spectroscopic broadening measurements (vsini = 15.7+1.4-1.3kms-1).
Resumo:
Context. Several competing scenarios for planetary-system formation and evolution seek to explain how hot Jupiters came to be so close to their parent stars. Most planetary parameters evolve with time, making it hard to distinguish between models. The obliquity of an orbit with respect to the stellar rotation axis is thought to be more stable than other parameters such as eccentricity. Most planets, to date, appear aligned with the stellar rotation axis; the few misaligned planets so far detected are massive (> 2 MJ). Aims: Our goal is to measure the degree of alignment between planetary orbits and stellar spin axes, to search for potential correlations with eccentricity or other planetary parameters and to measure long term radial velocity variability indicating the presence of other bodies in the system. Methods: For transiting planets, the Rossiter-McLaughlin effect allows the measurement of the sky-projected angle ß between the stellar rotation axis and a planet's orbital axis. Using the HARPS spectrograph, we observed the Rossiter-McLaughlin effect for six transiting hot Jupiters found by the WASP consortium. We combine these with long term radial velocity measurements obtained with CORALIE. We used a combined analysis of photometry and radial velocities, fitting model parameters with the Markov Chain Monte Carlo method. After obtaining ß we attempt to statistically determine the distribution of the real spin-orbit angle ?. Results: We found that three of our targets have ß above 90°: WASP-2b: ß = 153°+11-15, WASP-15b: ß = 139.6°+5.2-4.3 and WASP-17b: ß = 148.5°+5.1-4.2; the other three (WASP-4b, WASP-5b and WASP-18b) have angles compatible with 0°. We find no dependence between the misaligned angle and planet mass nor with any other planetary parameter. All six orbits are close to circular, with only one firm detection of eccentricity e = 0.00848+0.00085-0.00095 in WASP-18b. No long-term radial acceleration was detected for any of the targets. Combining all previous 20 measurements of ß and our six and transforming them into a distribution of ? we find that between about 45 and 85% of hot Jupiters have ? > 30°. Conclusions: Most hot Jupiters are misaligned, with a large variety of spin-orbit angles. We find observations and predictions using the Kozai mechanism match well. If these observational facts are confirmed in the future, we may then conclude that most hot Jupiters are formed from a dynamical and tidal origin without the necessity to use type I or II migration. At present, standard disc migration cannot explain the observations without invoking at least another additional process.
Resumo:
It has been widely thought that measuring the misalignment angle between the orbital plane of a transiting exoplanet and the spin of its host star was a good discriminator between different migration processes for hot-Jupiters. Specifically, well-aligned hot-Jupiter systems (as measured by the Rossiter-McLaughlin effect) were thought to have formed via migration through interaction with a viscous disc, while misaligned systems were thought to have undergone a more violent dynamical history. These conclusions were based on the assumption that the planet-forming disc was well-aligned with the host star. Recent work by Lai et al. has challenged this assumption, and proposes that the star-disc interaction in the pre-main sequence phase can exert a torque on the star and change its rotation axis angle. We have estimated the stellar rotation axis of a sample of stars which host spatially resolved debris disks. Comparison of our derived stellar rotation axis inclination angles with the geometrically measured debris-disk inclinations shows no evidence for a misalignment between the two.
Resumo:
Aims: We report the discovery of WASP-38b, a long period transiting planet in an eccentric 6.871815 day orbit. The transit epoch is 2 455 335.92050 ± 0.00074 (HJD) and the transit duration is 4.663 h. Methods: WASP-38b's discovery was enabled due to an upgrade to the SuperWASP-North cameras. We performed a spectral analysis of the host star HD 146389/BD+10 2980 that yielded Teff = 6150 ± 80 K, log g = 4.3 ± 0.1, v sin i = 8.6 ± 0.4 km s-1, M_* = 1.16 ± 0.04 M? and R_* = 1.33 ± 0.03 R?, consistent with a dwarf of spectral type F8. Assuming a main-sequence mass-radius relation for the star, we fitted simultaneously the radial velocity variations and the transit light curves to estimate the orbital and planetary parameters. Results: The planet has a mass of 2.69 ± 0.06 MJup and a radius of 1.09 ± 0.03 RJup giving a density, ?p = 2.1 ± 0.1 ?J. The high precision of the eccentricity e = 0.0314 ± 0.0044 is due to the relative transit timing from the light curves and the RV shape. The planet equilibrium temperature is estimated at 1292 ± 33 K. WASP-38b is the longest period planet found by SuperWASP-North and with a bright host star (V = 9.4 mag), is a good candidate for followup atmospheric studies. Photometry and RV data are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/525/A54
Resumo:
We present observations of the Rossiter–McLaughlin effect for the transiting exoplanets WASP-1b, WASP-24b, WASP-38b and HAT-P-8b, and deduce the orientations of the planetary orbits with respect to the host stars’ rotation axes. The planets WASP-24b, WASP-38b and HAT-P-8b appear to move in prograde orbits and be well aligned, having sky-projected spin-orbit angles consistent with zero: λ=−4°.7 ± 4°.0, 15°+33−43 and Graphic, respectively. The host stars have Teff < 6250 K and conform with the trend of cooler stars having low obliquities. WASP-38b is a massive planet on a moderately long period, eccentric orbit so may be expected to have a misaligned orbit given the high obliquities measured in similar systems. However, we find no evidence for a large spin-orbit angle. By contrast, WASP-1b joins the growing number of misaligned systems and has an almost polar orbit, λ=Graphic. It is neither very massive, eccentric nor orbiting a hot host star, and therefore does not share the properties of many other misaligned systems.
Resumo:
We have determined photoionization spectra of Ar with excitation of the 3p(4)(P-3)4p states emphasizing the effects of two different classes of Ar+ spin-orbit interactions. The spin-orbit splitting of each Ar+ state adequately describes the resonant excitation of the quartet states of Ar+, and gives Ar photoionization cross sections with excitation of the 3p4(3P)4p P-2(3/2)o and P-4(5/2)o levels of Ar+ in sufficiently good agreement with experiment to identify the observed resonances and to estimate the excitation strengths. In addition, we demonstrate the importance of spin-orbit induced mixing of different Ar+ LS-coupled states for observables such as the alignment of the 3p(4)(P-3)4p P-4(5/2)o level and the excitation of Rydberg series converging to the 3p(4)(P-3)4p S-2(o) and S-4(o) thresholds.
Resumo:
We use R-matrix theory with time dependence (RMT) to investigate multiphoton ionization of ground-state atomic carbon with initial orbital magnetic quantum number M_L=0 and M_L=1 at a laser wavelength of 390 nm and peak intensity of 10(14) W/cm(2). Significant differences in ionization yield and ejected-electron momentum distribution are observed between the two values for M_L. We use our theoretical results to model how the spin-orbit interaction affects electron emission along the laser polarization axis. Under the assumption that an initial C atom is prepared at zero time delay with M_L=0, the dynamics with respect to time delay of an ionizing probe pulse modeled by using RMT theory is found to be in good agreement with available experimental data.
Resumo:
We report the sky-projected orbital obliquity (spin–orbit angle) of WASP-84 b, a 0.69MJup planet in an 8.52 day orbit around a G9V/K0V star, to be λ = −0.3 ± 1.7°. We obtain a true obliquity of ψ = 17.3 ± 7.7° from a measurement of the inclination of the stellar spin axis with respect to the sky plane. Due to the young age and the weak tidal forcing of the system, we suggest that the orbit of WASP-84b is unlikely to have both realigned and circularized from the misaligned and/or eccentric orbit likely to have arisen from high-eccentricity migration. Therefore we conclude that the planet probably migrated via interaction with the protoplanetary disk. This would make it the first “hot Jupiter” (P d < 10 ) to have been shown to have migrated via this pathway. Further, we argue that the distribution of obliquities for planets orbiting cool stars (Teff < 6250 K) suggests that high-eccentricity migration is an important pathway for the formation of short-orbit, giant planets.
Resumo:
It has been widely thought that measuring the misalignment angle between the orbital plane of a transiting exoplanet and the spin of its host star was a good discriminator between different migration processes for hot-Jupiters. Specifically, well-aligned hot-Jupiter systems (as measured by the Rossiter-McLaughlin effect) were thought to have formed via migration through interaction with a viscous disc, while misaligned systems were thought to have undergone a more violent dynamical history. These conclusions were based on the assumption that the planet-forming disc was well-aligned with the host star. Recent work by a number of authors has challenged this assumption by proposing mechanisms that act to drive the star-disc interaction out of alignment during the pre-main-sequence phase. We have estimated the stellar rotation axis of a sample of stars which host spatially resolved debris discs. Comparison of our derived stellar rotation axis inclination angles with the geometrically measured debris-disc inclinations shows no evidence for a misalignment between the two.
Resumo:
When a planet transits its host star, it blocks regions of the stellar surface from view; this causes a distortion of the spectral lines and a change in the line-of-sight (LOS) velocities, known as the Rossiter-McLaughlin (RM) effect. Since the LOS velocities depend, in part, on the stellar rotation, the RM waveform is sensitive to the star-planet alignment (which provides information on the system’s dynamical history). We present a new RM modelling technique that directly measures the spatially-resolved stellar spectrum behind the planet. This is done by scaling the continuum flux of the (HARPS) spectra by the transit light curve, and then subtracting the infrom the out-of-transit spectra to isolate the starlight behind the planet. This technique does not assume any shape for the intrinsic local profiles. In it, we also allow for differential stellar rotation and centre-to-limb variations in the convective blueshift. We apply this technique to HD 189733 and compare to 3D magnetohydrodynamic (MHD) simulations. We reject rigid body rotation with high confidence (>99% probability), which allows us to determine the occulted stellar latitudes and measure the stellar inclination. In turn, we determine both the sky-projected (λ ≈ −0.4 ± 0.2◦) and true 3D obliquity (ψ ≈ 7+12 −4 ◦ ). We also find good agreement with the MHD simulations, with no significant centre-to-limb variations detectable in the local profiles. Hence, this technique provides a new powerful tool that can probe stellar photospheres, differential rotation, determine 3D obliquities, and remove sky-projection biases in planet migration theories. This technique can be implemented with existing instrumentation, but will become even more powerful with the next generation of high-precision radial velocity spectrographs.
Resumo:
The eigenphase formulation of Blatt and Biedenharn is applied to fine-structure transitions in *P atoms colliding with ‘S perturbers. Consideration is given to the limit of weak spin-orbit interaction. If the eigenphases are equal to the phaseshifts for elastic scattering by the molecular potentials then the expression for the total cross section reduces to the expression derived in the elastic approximation. However, a numerical comparison for the Li(2p ’P) + He(’S) system shows that the elastic molecular phaseshifts are not good approximations to the eigenphases. Hence the elastic approximation cannot be reliable.
Resumo:
We present time-series data on Jupiter Family Comets (JFCs) 17P/Holmes, 47P/Ashbrook-Jackson and 137P/Shoemaker-Levy 2. In addition we also present results from `snap-shot' observations of comets 43P/Wolf-Harrington, 44P/Reinmuth 2, 103P/Hartley 2 and 104P/Kowal 2 taken during the same run. The comets were at heliocentric distances of between 3 and 7 au at this time. We present measurements of size and activity levels for the snap-shot targets. The time-series data allow us to constrain rotation periods and shapes, and thus bulk densities. We also measure colour indices (V - R) and (R - I) and reliable radii for these comets. We compare all of our findings to date with similar results for other comets and Kuiper Belt Objects (KBOs). We find that the rotational properties of nuclei and KBOs are very similar, that there is evidence for a cut-off in bulk densities at ~0.6 g cm-3 in both populations, and the colours of the two populations show similar correlations. For JFCs, there is no observational evidence for the optical colours being dependent on either position in the orbit or orbital parameters.