131 resultados para fusion product
Resumo:
In previous papers, we have presented a logic-based framework based on fusion rules for merging structured news reports. Structured news reports are XML documents, where the textentries are restricted to individual words or simple phrases, such as names and domain-specific terminology, and numbers and units. We assume structured news reports do not require natural language processing. Fusion rules are a form of scripting language that define how structured news reports should be merged. The antecedent of a fusion rule is a call to investigate the information in the structured news reports and the background knowledge, and the consequent of a fusion rule is a formula specifying an action to be undertaken to form a merged report. It is expected that a set of fusion rules is defined for any given application. In this paper we extend the approach to handling probability values, degrees of beliefs, or necessity measures associated with textentries in the news reports. We present the formal definition for each of these types of uncertainty and explain how they can be handled using fusion rules. We also discuss the methods of detecting inconsistencies among sources.
Resumo:
The present paper describes the results of an investigation into the modelling of plug assisted thermoforming. The objective of this work was to improve the finite element modelling of thermoforming through an enhanced understanding of the physical elements underlying the process. Experiments were carried out to measure the effects on output of changes in major parameters and simultaneously simple finite element models were constructed. The experimental results show that the process creates conflicting and interrelated contact friction and heat transfer effects that largely dictate the final wall thickness distribution. From the simulation work it was demonstrated that a high coefficient of friction and no heat transfer can give a good approximation of the actual wall thickness distribution. However, when conduction was added to the model the results for lower friction values were greatly improved. It was concluded that further work is necessary to provide realistic measurements and models for contact effects in thermoforming.
Resumo:
ate studies(2) and fusion energy research(3,4). Laser-driven implosions of spherical polymer shells have, for example, achieved an increase in density of 1,000 times relative to the solid state(5). These densities are large enough to enable controlled fusion, but to achieve energy gain a small volume of compressed fuel (known as the 'spark') must be heated to temperatures of about 10(8) K (corresponding to thermal energies in excess of 10 keV). In the conventional approach to controlled fusion, the spark is both produced and heated by accurately timed shock waves(4), but this process requires both precise implosion symmetry and a very large drive energy. In principle, these requirements can be significantly relaxed by performing the compression and fast heating separately(6-10); however, this 'fast ignitor' approach(7) also suffers drawbacks, such as propagation losses and deflection of the ultra-intense laser pulse by the plasma surrounding the compressed fuel. Here we employ a new compression geometry that eliminates these problems; we combine production of compressed matter in a laser-driven implosion with picosecond-fast heating by a laser pulse timed to coincide with the peak compression. Our approach therefore permits efficient compression and heating to be carried out simultaneously, providing a route to efficient fusion energy production.
Resumo:
Rapid heating of a compressed fusion fuel by a short-duration laser pulse is a promising route to generating energy by nuclear fusion1, and has been demonstrated on an experimental scale using a novel fast-ignitor geometry2. Here we describe a refinement of this system in which a much more powerful, pulsed petawatt (1015 watts) laser creates a fastheated core plasma that is scalable to fullscale ignition, significantly increasing the number of fusion events while still maintaining high heating efficiency at these substantially higher laser energies. Our findings bring us a step closer to realizing the production of relatively inexpensive, full-scale fast-ignition laser facilities.
Resumo:
Previous peptidomic analyses of the defensive skin secretion from the North American pickerel frog, Rana palustris, have established the presence of canonical bradykinin and multiple bradykinin-related peptides (BRPs). As a consequence of the multiplicity of peptides identified and their diverse primary structures, it was speculated that they must represent the products of expression of multiple genes. Here, we present unequivocal evidence that the majority of BRPs (11/13) identified in skin secretion by the peptidomic approach can be generated by differential site-specific protease cleavage from a single common precursor of 321 amino acid residues, named skin kininogen 1, whose primary structure was deduced from cloned skin secretion-derived cDNA. The organization of skin kininogen 1 consists of a hydrophobic signal peptide followed by eight non-identical domains each encoding a single copy of either canonical bradykinin or a BRP. Two additional splice variants, encoding precursors of 233 (skin kininogen 2) or 189 amino acid residues (skin kininogen 3), were also cloned and were found to lack BRP-encoding domains 5 and 6 or 4, 5 and 6, respectively. Thus, generation of peptidome diversity in amphibian defensive skin secretions can be achieved in part by differential protease cleavage of relatively large and multiple-encoding domain precursors reflecting a high degree of transcriptional economy.