55 resultados para experimental visual perception


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The channel-based model of duration perception postulates the existence of neural mechanisms that respond selectively to a narrow range of stimulus durations centred on their preferred duration (Heron et al Proceedings of the Royal Society B 279 690–698). In principle the channel-based model could
explain recent reports of adaptation-induced, visual duration compression effects (Johnston et al Current Biology 16 472–479; Curran and Benton Cognition 122 252–257); from this perspective duration compression is a consequence of the adapting stimuli being presented for a longer duration than the test stimuli. In the current experiment observers adapted to a sequence of moving random dot patterns at the same retinal position, each 340ms in duration and separated by a variable (500–1000ms) interval. Following adaptation observers judged the duration of a 600ms test stimulus at the same location. The test stimulus moved in the same, or opposite, direction as the adaptor. Contrary to the channel-based
model’s prediction, test stimulus duration appeared compressed, rather than expanded, when it moved in the same direction as the adaptor. That test stimulus duration was not distorted when moving in the opposite direction further suggests that visual timing mechanisms are influenced by additional neural processing associated with the stimulus being timed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The circumstances in Colombo, Sri Lanka, and in Belfast, Northern Ireland, which led to a) the generalization of luminescent PET (photoinduced electron transfer) sensing/switching as a design tool, b) the construction of a market-leading blood electrolyte analyzer and c) the invention of molecular logic-based computation as an experimental field, are delineated. Efforts to extend the philosophy of these approaches into issues of small object identification, nanometric mapping, animal visual perception and visual art are also outlined.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We investigated whether infants from 8 ^ 22 weeks of age were sensitive to the illusory contour created by aligned line terminators. Previous reports of illusory-contour detection in infants under 4 months old could be due to infants' preference for the presence of terminators rather than their configuration. We generated preferential-looking stimuli containing sinusoidal lines whose oscillating, abutting terminators give a strong illusory contour in adult perception. Our experiments demonstrated a preference in infants 8 weeks old and above for an oscillating illusory contour compared with a stimulus containing equal terminator density and movement. Control experiments excluded local line density, or attention to alignment in general, as the basis for this result. In the youngest age group (8 ^ 10 weeks) stimulus velocity appears to be critical in determining the visibility of illusory contours, which is consistent with other data on motion processing at this age. We conclude that, by 2 months of age, the infant's visual system contains the nonlinear mechanisms necessary to extract an illusory contour from aligned terminators.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background:
Internationally, nurse-directed protocolised-weaning has been evaluated by measuring its impact on patient outcomes. The impact on nurses’ views and perceptions has been largely ignored.

Aim:
To determine the change in intensive care nurses’ perceptions, satisfaction, knowledge and attitudes following the introduction of nurse-directed weaning. Additionally, views were obtained on how useful protocolised-weaning was to practice.

Methods:
The sample comprised nurses working in general intensive care units in three university-affiliated hospitals. Nurse-directed protocolised-weaning was implemented in one unit (intervention group); two ICUs continued with usual doctor-led practice (control group). Nurses’ perceptions, satisfaction, knowledge and attitudes were measured by self-completed questionnaires before (Phase I) and after the implementation of nurse-directed weaning (Phase II) in all units.

Results:
Response rates were 79% (n=140n=140) for Phase 1 and 62% (n=132n=132) for Phase II. Regression-based analyses showed that changes from Phase I to Phase II were not significantly different between the intervention and control groups. Sixty-nine nurses responded to both Phase I and II questionnaires. In the intervention group, these nurses scored their mean perceived level of knowledge higher in Phase II (6.39 vs 7.17, p=0.01p=0.01). In the control group, role perception (4.41 vs 4.22, p=0.01p=0.01) was lower and, perceived knowledge (6.03 vs 6.63, p=0.04p=0.04), awareness of weaning plans (6.09 vs 7.06, p=0.01p=0.01) and satisfaction with communication (5.28 vs 6.19, p=0.01p=0.01) were higher in Phase II. The intervention group found protocolised weaning useful in their practice (75%): this was scored significantly higher by junior and senior nurses than middle grade nurses (p=0.02p=0.02).

Conclusion

We conclude that nurse-directed protocolised-weaning had no effect on nurses’ views and perceptions due to the high level of satisfaction which encouraged nurses’ participation in weaning throughout. Control group changes are attributed to a ‘reactive effect’ from being study participants. Weaning protocols provide a uniform method of weaning practice and are particularly beneficial in providing safe guidance for junior staff.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During lateral leg raising, a synergistic inclination of the supporting leg and trunk in the opposite direction to the leg movement is performed in order to preserve equilibrium. As first hypothesized by Pagano and Turvey (J Exp Psychol Hum Percept Perform, 1995, 21:1070-1087), the perception of limb orientation could be based on the orientation of the limb's inertia tensor. The purpose of this study was thus to explore whether the final upper body orientation (trunk inclination relative to vertical) depends on changes in the trunk inertia tensor. We imposed a loading condition, with total mass of 4 kg added to the subject's trunk in either a symmetrical or asymmetrical configuration. This changed the orientation of the trunk inertia tensor while keeping the total trunk mass constant. In order to separate any effects of the inertia tensor from the effects of gravitational torque, the experiment was carried out in normo- and microgravity. The results indicated that in normogravity the same final upper body orientation was maintained irrespective of the loading condition. In microgravity, regardless of loading conditions the same (but different from the normogravity) orientation of the upper body was achieved through different joint organizations: two joints (the hip and ankle joints of the supporting leg) in the asymmetrical loading condition, and one (hip) in the symmetrical loading condition. In order to determine whether the different orientations of the inertia tensor were perceived during the movement, the interjoint coordination was quantified by performing a principal components analysis (PCA) on the supporting and moving hips and on the supporting ankle joints. It was expected that different loading conditions would modify the principal component of the PCA. In normogravity, asymmetrical loading decreased the coupling between joints, while in microgravity a strong coupling was preserved whatever the loading condition. It was concluded that the trunk inertia tensor did not play a role during the lateral leg raising task because in spite of the absence of gravitational torque the final upper body orientation and the interjoint coupling were not influenced.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Simultaneous contrast effects have been found across a wide range of visual dimensions. We describe a simultaneous contrast effect - three-dimensional curvature contrast - in which the apparent curvature of a surface defined by shading and texture information is influenced by the curvature of a surrounding surface. The effect is strong and easily measurable. We asked whether the effect depends upon the presence of contrast at the level of the internal representation of surface curvature or whether it could be better explained in terms of local changes in the apparent brightness of regions within the test patches induced by luminance transition at the borders. The experimental results suggest that, whicle these luminance-contrast-induced effects do contribute to the observed changes in perceived curvature, there are additional influences. In particular changes in perceived curvature induced by a pattern of curved patches were eliminated or considerably weakened when the inducing pattern was transformed into a photographic negative, a procedure which disrupts the apparent three-dimensional structure of the surface patches without changing their brightness contrast. This suggests a component of the illusion involves comparisons at the level of representation of surface curvature. The observation that three-dimensional curvature contrast presists when the inducing surfaces are spatially separate from the test surface suggests that shape perception involves global, as well as local, operations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Augmented visual feedback can have a profound bearing on the stability of bimanual coordination. Indeed, this has been used to render tractable the study of patterns of coordination that cannot otherwise be produced in a stable fashion. In previous investigations (Carson et al. 1999), we have shown that rhythmic movements, brought about by the contraction of muscles on one side of the body, lead to phase-locked changes in the excitability of homologous motor pathways of the opposite limb. The present study was conducted to assess whether these changes are influenced by the presence of visual feedback of the moving limb. Eight participants performed rhythmic flexion-extension movements of the left wrist to the beat of a metronome (1.5 Hz). In 50% of trials, visual feedback of wrist displacement was provided in relation to a target amplitude, defined by the mean movement amplitude generated during the immediately preceding no feedback trial. Motor potentials (MEPs) were evoked in the quiescent muscles of the right limb by magnetic stimulation of the left motor cortex. Consistent with our previous observations, MEP amplitudes were modulated during the movement cycle of the opposite limb. The extent of this modulation was, however, smaller in the presence of visual feedback of the moving limb (FCR omega(2) =0.41; ECR omega(2)=0.29) than in trials in which there was no visual feedback (FCR omega(2)=0.51; ECR omega(2)=0.48). In addition, the relationship between the level of FCR activation and the excitability of the homologous corticospinal pathway of the opposite limb was sensitive to the vision condition; the degree of correlation between the two variables was larger when there was no visual feedback of the moving limb. The results of the present study support the view that increases in the stability of bimanual coordination brought about by augmented feedback may be mediated by changes in the crossed modulation of excitability in homologous motor pathways.