48 resultados para enzymatic hydrolysis


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A liquid chromatography-thermospray mass spectrometric assay was developed and validated to confirm the presence of illegal residues of the synthetic androgenic growth promoter, trenbolone acetate, in cattle. The assay was specific for 17alpha-trenbolone, the major bovine metabolite of trenbolone acetate. Methods were developed for the determination of 17alpha-trenbolone in both bile and faeces, the most appropriate matrices for the control of trenbolone acetate abuse. The clean-up.procedure developed relied on enzymatic hydrolysis, followed by sequential liquid-liquid and liquid-solid extraction. The extracts were then subjected to immunoaffinity chromatography. 17alpha-Trenbolone was detected by selected ion monitoring at m/z 271 using positive ion thermospray ionisation. The limit of detection was approximately 0.5 ng/g in faeces and 0.5 ng/ml in bile.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Residues of 19-nortestosterone (19-NT) and diethylstilboestrol (DES) are excreted in bovine urine, mainly conjugated to glucuronic acid. Prior to quantification, urine must be deconjugated, which is commonly performed by enzymatic or chemical hydrolysis. The efficiencies of two enzymatic and two chemical deconjugation methods were studied. The range of efficiencies obtained for DES were 51.8% (beta -glucuronidase, incubation at 37 degreesC overnight) and 2.7% (methanolic HCl), respectively. Similarly, efficiencies for NT ranged from 43.1% (beta -glucuronidase, incubation at 55 degreesC for 2 h) to 12.7% (methanolic HCl). The results highlight that within control laboratories significant underestimation of drug residue content in samples may occur, due to poor deconjugation. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several potential approaches to the enzyme-catalysed synthesis of arene trans-diols have been examined including epoxidation/hydrolysis, bis-benzylic hydroxylation, cis-dihydroxylation/alcohol dehydrogenation/ketone reduction, cisdihydroxylation/cis-trans isomerisation. and multi-enzyme synthesis of trans-dihydrodiol secondary metabolites from primary metabolites. The lack of general applicability of these enzymatic methods has led to the development of several chemoenzymatic routes for the synthesis of a series of trans-dihydrodiols from the readily available cis-dihydrodiol precursors. Partial hydrogenation of cis-dihydrodiol metabolites to yield the corresponding cis-tetrahydrodiols followed by a regioselective Mitsunobu inversion process gave trans-tetrahydrodiols that were in turn converted to trans-dihydrodiols. The formation of anti-benzene dioxides or iron tricarbonyl complexes from the corresponding cis-dihydrodiol precursors provided shorter and more convenient chemoenzymatic routes to trans-dihydrodiols. The application of cis-dihydrodiol metabolites of polycyclic azaarenes in the synthesis of the corresponding arene oxides followed by chemical hydrolysis provides a convenient route to trans-dihydrodiols. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of glycosylation on susceptibility of skin collagen to collagenase digestion was studied in a skin sample obtained at autopsy from the interscapular region of a 24 year old white male who had died of an acute illness and who had no history of diabetes. Homogeneous suspensions of insoluble collagen were prepared, and were incubated in 50 mmol l-1 dextrose at pH 7.35 and 37 degrees C for 7 days. Non-enzymatic glycosylation measured by the weak acid hydrolysis/thiobarbituric acid method increased from 13.1 +/- 1.0 (n = 5) to 45.2 +/- 5.5 (n = 8) nmol fructose per 10 mg collagen (P less than 0.001). Digestion of collagen using clostridial collagenase was monitored by measuring (a) hydroxyproline content and (b) absorption at 206 nm of the supernatant after centrifugation to remove substrate. The rate of digestion was similar in glycosylated and control collagen. We conclude that the ketoamine link formed in non-enzymatic glycosylation does not increase the resistance of collagen to enzymatic digestion. The possibility remains that subsequent rearrangement of this link could be important in this respect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Severe acute respiratory syndrome coronavirus (SARS-CoV), a newly identified group 2 coronavirus, is the causative agent of severe acute respiratory syndrome, a life-threatening form of pneumonia in humans. Coronavirus replication and transcription are highly specialized processes of cytoplasmic RNA synthesis that localize to virus-induced membrane structures and were recently proposed to involve a complex enzymatic machinery that, besides RNA-dependent RNA polymerase, helicase, and protease activities, also involves a series of RNA-processing enzymes that are not found in most other RNA virus families. Here, we characterized the enzymatic activities of a recombinant form of the SARS-CoV helicase (nonstructural protein [nsp] 13), a superfamily 1 helicase with an N-terminal zinc-binding domain. We report that nsp13 has both RNA and DNA duplex-unwinding activities. SARS-CoV nsp13 unwinds its substrates in a 5'-to-3' direction and features a remarkable processivity, allowing efficient strand separation of extended regions of double-stranded RNA and DNA. Characterization of the nsp13-associated (deoxy)nucleoside triphosphatase ([dNTPase) activities revealed that all natural nucleotides and deoxynucleotides are substrates of nsp13, with ATP, dATP, and GTP being hydrolyzed slightly more efficiently than other nucleotides. Furthermore, we established an RNA 5'-triphosphatase activity for the SARS-CoV nsp13 helicase which may be involved in the formation of the 5' cap structure of viral RNAs. The data suggest that the (d)NTPase and RNA 5'-triphosphatase activities of nsp13 have a common active site. Finally, we established that, in SARS-CoV-infected Vero E6 cells, nsp13 localizes to membranes that appear to be derived from the endoplasmic reticulum and are the likely site of SARS-CoV RNA synthesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To give the first demonstration of neighboring group-controlled drug delivery rates, a series of novel, polymerizable ester drug conjugates was synthesized and fully characterized. The monomers are suitable for copolymerization in biomaterials where control of drug release rate is critical to prophylaxis or obviation of infection. The incorporation of neighboring group moieties differing in nucleophilicity, geometry, and steric bulk in the conjugates allowed the rate of ester hydrolysis, and hence drug liberation, to be rationally and widely controlled. Solutions (2.5 x 10-5 mol dm-3) of ester conjugates of nalidixic acid incorporating pyridyl, amino, and phenyl neighboring groups hydrolyzed according to first-order kinetics, with rate constants between 3.00 ( 0.12 10-5 s -1 (fastest) and 4.50 ( 0.31 10- 6 s-1 (slowest). The hydrolysis was characterized using UV-visible spectroscopy. When copolymerized with poly(methyl methacrylate), free drug was shown to elute from the resulting materials, with the rate of release being controlled by the nature of the conjugate, as in solution. The controlled molecular architecture demonstrated by this system offers an attractive class of drug conjugate for the delivery of drugs from polymeric biomaterials such as bone cements in terms of both sustained, prolonged drug release and minimization of mechanical compromise as a result of release. We consider these results to be the rationale for the development of 'designer' drug release biomaterials, where the rate of required release can be controlled by predetermined molecular architecture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of cis-dihydrodiol metabolites, available from the bacterial dioxygenase-catalysed oxidation of monosubstituted benzene substrates using Pseudomonas putida UV4, have been converted to the corresponding catechols using both a heterogeneous catalyst (Pd/C) and a naphthalene cis-diol dehydrogenase enzyme present in whole cells of the recombinant strain Escherichia coli DH5 alpha(pUC129: nar B). A comparative study of the merits of both routes to 3-substituted catechols has been carried out and the two methods have been found to be complementary. A similarity in mechanism for catechol formation under both enzymatic and chemoenzymatic conditions, involving regioselective oxidation of the hydroxyl group at C-1, has been found using deuterium labelled toluene cis-dihydrodiols. The potential, of combining a biocatalytic step (dioxygenase-catalysed cis-dihydroxylation) with a chemocatalytic step (Pd/C-catalysed dehydrogenation), into a one-pot route to catechols, from the parent substituted benzene substrates, has been realised.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nidoviruses (Coronaviridae, Arteriviridae, and Roniviridae) encode a nonstructural protein, called nsp10 in arteriviruses and nsp13 in coronaviruses, that is comprised of a C-terminal superfamily 1 helicase domain and an N-terminal, putative zinc-binding domain (ZBD). Previously, mutations in the equine arteritis virus (EAV) nsp10 ZBD were shown to block arterivirus reproduction by disrupting RNA synthesis and possibly virion biogenesis. Here, we characterized the ATPase and helicase activities of bacterially expressed mutant forms of nsp10 and its human coronavirus 229E ortholog, nsp13, and correlated these in vitro activities with specific virus phenotypes. Replacement of conserved Cys or His residues with Ala proved to be more deleterious than Cys-for-His or His-for-Cys replacements. Furthermore, denaturation-renaturation experiments revealed that, during protein refolding, Zn2+ is essential for the rescue of the enzymatic activities of nidovirus helicases. Taken together, the data strongly support the zinc-binding function of the N-terminal domain of nidovirus helicases. nsp10 ATPase/helicase deficiency resulting from single-residue substitutions in the ZBD or deletion of the entire domain could not be complemented in trans by wild-type ZBD, suggesting a critical function of the ZBD in cis. Consistently, no viral RNA synthesis was detected after transfection of EAV full-length RNAs encoding ATPase/helicase-deficient nsp10 into susceptible cells. In contrast, diverse phenotypes were observed for mutants with enzymatically active nsp10, which in a number of cases correlated with the activities measured in vitro. Collectively, our data suggest that the ZBD is critically involved in nidovirus replication and transcription by modulating the enzymatic activities of the helicase domain and other, yet unknown, mechanisms.