205 resultados para end effectors
Resumo:
This thesis investigates the hydrodynamics of a small, seabed mounted, bottom hinged, wave energy converter in shallow water. The Oscillating Wave Surge Converter is a pitching flap-type device which is located in 10-15m of water to take advantage of the amplification of horizontal water particle motion in shallow water. A conceptual model of the hydrodynamics of the device has been formulated and shows that, as the motion of the flap is highly constrained, the magnitude of the force applied to the flap by the wave is strongly linked to the power absorption.
An extensive set of experiments has been carried out in the wave tank at Queen’s University at both 40th and 20th scales. The experiments have included testing in realistic sea states to estimate device performance as well as fundamental tests using small amplitude monochromatic waves to determine the force applied to the flap by the waves. The results from the physical modelling programme have been used in conjunction with numerical data from WAMIT to validate the conceptual model.
The work finds that tuning the OWSC to the incident wave periods is problematic and only results in a marginal increase in power capture. It is also found that the addition of larger diameter rounds to the edges of the flap reduces viscous losses and has a greater effect on the performance of the device than tuning. As wave force is the primary driver of device performance it is shown that the flap should fill the water column and should pierce the water surface to reduce losses due to wave overtopping.
With the water depth fixed at approximately 10m it is shown that the width of the flap has the greatest impact on the magnitude of wave force, and thus device performance. An 18m wide flap is shown to have twice the absorption efficiency of a 6m wide flap and captures 6 times the power. However, the increase in power capture with device width is not limitless and a 24m wide flap is found to be affected by two-dimensional hydrodynamics which reduces its performance per unit width, especially in sea states with short periods. It is also shown that as the width increases the performance gains associated with the addition of the end effectors reduces. Furthermore, it is shown that as the flap width increases the natural pitching period of the flap increases, thus detuning the flap further from the wave periods of interest for wave energy conversion.
The effect of waves approaching the flap from an oblique angle is also investigated and the power capture is found to decrease with the cosine squared of the encounter angle. The characteristic of the damping applied by the power take off system is found to have a significant effect on the power capture of the device, with constant damping producing between 20% and 30% less power than quadratic damping. Furthermore, it is found that applying a higher level of damping, or a damping bias, to the flap as it pitches towards the beach increases the power capture by 10%.
A further set of experiments has been undertaken in a case study used to predict the power capture of a prototype of the OWSC concept. The device, called the Oyster Demonstrator, has been developed by Aquamarine Power Ltd. and is to be installed at the European Marine Energy Centre, Scotland, in 2009.
The work concludes that OWSC is a viable wave energy converter and absorption efficiencies of up 75% have been measured. It is found that to maximise power absorption the flap should be approximately 20m wide with large diameter rounded edges, having its pivot close to the seabed and its top edge piercing the water surface.
Resumo:
Aims/hypothesis: Referred to as CCN, the family of growth factors consisting of cystein-rich protein 61 (CYR61, also known as CCN1), connective tissue growth factor (CTGF, also known as CCN2), nephroblastoma overexpressed gene (NOV, also known as CCN3) and WNT1-inducible signalling pathway proteins 1, 2 and 3 (WISP1, -2 and -3; also known as CCN4, -5 and -6) affects cellular growth, differentiation, adhesion and locomotion in wound repair, fibrotic disorders, inflammation and angiogenesis. AGEs formed in the diabetic milieu affect the same processes, leading to diabetic complications including diabetic retinopathy. We hypothesised that pathological effects of AGEs in the diabetic retina are a consequence of AGE-induced alterations in CCN family expression.
Materials and methods: CCN gene expression levels were studied at the mRNA and protein level in retinas of control and diabetic rats using real-time quantitative PCR, western blotting and immunohistochemistry at 6 and 12 weeks of streptozotocin-induced diabetes in the presence or absence of aminoguanidine, an AGE inhibitor. In addition, C57BL/6 mice were repeatedly injected with exogenously formed AGE to establish whether AGE modulate retinal CCN growth factors in vivo.
Results: After 6 weeks of diabetes, Cyr61 expression levels were increased more than threefold. At 12 weeks of diabetes, Ctgf expression levels were increased twofold. Treatment with aminoguanidine inhibited Cyr61 and Ctgf expression in diabetic rats, with reductions of 31 and 36%, respectively, compared with untreated animals. Western blotting showed a twofold increase in CTGF production, which was prevented by aminoguanidine treatment. In mice infused with exogenous AGE, Cyr61 expression increased fourfold and Ctgf expression increased twofold in the retina.
Conclusions/interpolation: CTGF and CYR61 are downstream effectors of AGE in the diabetic retina, implicating them as possible targets for future intervention strategies against the development of diabetic retinopathy.
Resumo:
Advanced glycation end products (AGEs) have been implicated in the progressive vascular dysfunction which occurs during diabetic retinopathy. In the current study we have examined the role of these adducts in blood-retinal barrier (BRB) breakdown and investigated expression of the vasopermeabilizing agent vascular endothelial growth factor (VEGF) in the retina. When normoglycemic rats were injected with AGE-modified albumin daily for up to 10 days there was widespread leakage of FITC-dextran and serum albumin from the retinal vasculature when compared to control animals treated with nonmodified albumin. Ultrastructural examination of the vasculature revealed areas of attenuation of the retinal vascular endothelium and increased vesicular organelles only in the AGE-exposed rats. Quantitative RT-PCR and in situ hybridization demonstrated a significant increase in retinal VEGF mRNA expression (P <0.05). These results suggest that AGEs can initiate BRB dysfunction in nondiabetic rats and a concomitant increase in retinal VEGF expression. These findings may have implications for the role of AGEs in the pathogenesis of diabetic retinopathy.
Resumo:
BACKGROUND: Diabetics have a significantly higher percentage of sperm with nuclear DNA (nDNA) fragmentation and increased levels of advanced glycation end products (AGEs), in their testis, epididymis and sperm. As the receptor for AGEs (RAGE) is important to oxidative stress and cell dysfunction, we hypothesise, that it may be involved in sperm nDNA damage. METHODS: Immunohistochemistry was performed to determine the presence of RAGE in the human testis and epididymis. A comparison of the receptor's incidence and localisation on sperm from 10 diabetic and 11 non-diabetic men was conducted by blind semi-quantitative assessment of the immunostaining. ELISA analysis ascertained RAGE levels in seminal plasma and sperm from 21 diabetic and 31 non-diabetic subjects. Dual labelling immunolocalisation was employed to evaluate RAGE's precise location on the sperm head. RESULTS: RAGE was found throughout the testis, caput epididymis, particularly the principle cells apical region, and on sperm acrosomes. The number of sperm displaying RAGE and the overall protein amount found in sperm and seminal plasma were significantly higher in samples from diabetic men (p
Resumo:
Suppression of angiogenesis during diabetes is a recognized phenomenon but is less appreciated within the context of diabetic retinopathy. The current study has investigated regulation of retinal angiogenesis by diabetic serum and determined if advanced glycation end products (AGEs) could modulate this response, possibly via AGE-receptor interactions. A novel in vitro model of retinal angiogenesis was developed and the ability of diabetic sera to regulate this process was quantified. AGE-modified serum albumin was prepared according to a range of protocols, and these were also analyzed along with neutralization of the AGE receptors galectin-3 and RAGE. Retinal ischemia and neovascularization were also studied in a murine model of oxygen-induced proliferative retinopathy (OIR) in wild-type and galectin-3 knockout mice (gal3(-/-)) after perfusion of preformed AGEs. Serum from nondiabetic patients showed significantly more angiogenic potential than diabetic serum (P <0.0001) and within the diabetic group, poor glycemic control resulted in more AGEs but less angiogenic potential than tight control (P <0.01). AGE-modified albumin caused a dose-dependent inhibition of angiogenesis (P <0.001), and AGE receptor neutralization significantly reversed the AGE-mediated suppression of angiogenesis (P <0.01). AGE-treated wild-type mice showed a significant increase in inner retinal ischemia and a reduction in neovascularization compared with non-AGE controls (P <0.001). However, ablation of galectin-3 abolished the AGE-mediated increase in retinal ischemia and restored the neovascular response to that seen in controls. The data suggest a significant suppression of angiogenesis by the retinal microvasculature during diabetes and implicate AGEs and AGE-receptor interactions in its causation.
Resumo:
PURPOSE: A critical event in the pathogenesis of diabetic retinopathy is the inappropriate adherence of leukocytes to the retinal capillaries. Advanced glycation end-products (AGEs) are known to play a role in chronic inflammatory processes, and the authors postulated that these adducts may play a role in promoting pathogenic increases in proinflammatory pathways within the retinal microvasculature. METHODS: Retinal microvascular endothelial cells (RMECs) were treated with glycoaldehyde-modified albumin (AGE-Alb) or unmodified albumin (Alb). NFkappaB DNA binding was measured by electromobility shift assay (EMSA) and quantified with an ELISA: In addition, the effect of AGEs on leukocyte adhesion to endothelial cell monolayers was investigated. Further studies were performed in an attempt to confirm that this was AGE-induced adhesion by co-incubation of AGE-treated cells with soluble receptor for AGE (sRAGE). Parallel in vivo studies of nondiabetic mice assessed the effect of intraperitoneal delivery of AGE-Alb on ICAM-1 mRNA expression, NFkappaB DNA-binding activity, leukostasis, and blood-retinal barrier breakdown. RESULTS: Treatment with AGE-Alb significantly enhanced the DNA-binding activity of NFkappaB (P = 0.0045) in retinal endothelial cells (RMECs) and increased the adhesion of leukocytes to RMEC monolayers (P = 0.04). The latter was significantly reduced by co-incubation with sRAGE (P <0.01). Mice infused with AGE-Alb demonstrated a 1.8-fold increase in ICAM-1 mRNA when compared with control animals (P <0.001, n = 20) as early as 48 hours, and this response remained for 7 days of treatment. Quantification of retinal NFkappaB demonstrated a threefold increase with AGE-Alb infusion in comparison to control levels (AGE Alb versus Alb, 0.23 vs. 0.076, P <0.001, n = 10 mice). AGE-Alb treatment of mice also caused a significant increase in leukostasis in the retina (AGE-Alb versus Alb, 6.89 vs. 2.53, n = 12, P <0.05) and a statistically significant increase in breakdown of the blood-retinal barrier (AGE Alb versus Alb, 8.2 vs. 1.6 n = 10, P <0.001). CONCLUSIONS: AGEs caused upregulation of NFkappaB in the retinal microvascular endothelium and an AGE-specific increase in leukocyte adhesion in vitro was also observed. In addition, increased leukocyte adherence in vivo was demonstrated that was accompanied by blood-retinal barrier dysfunction. These findings add further evidence to the thinking that AGEs may play an important role in the pathogenesis of diabetic retinopathy.
Resumo:
Light microscopic studies comparing sperm parameters show little association between diabetes and male fertility. However, with the introduction of new analytical techniques, evidence is now emerging of previously undetectable affects of diabetes on sperm function. Specifically, a recent study has found significantly higher sperm nuclear DNA (nDNA) fragmentation in diabetic men. As advanced glycation end products (AGEs) are important instigators of oxidative stress and cell dysfunction in numerous diabetic complications, we hypothesized that these compounds could also be present in the male reproductive tract. The presence and localization of the most prominent AGE, carboxymethyl-lysine (CML), in the human testis, epididymis and sperm was determined by immunohistochemistry. Parallel ELISA and Western blot analyses were performed to ascertain the amount of CML in seminal plasma and sperm from 13 diabetic and 9 non-diabetic subjects. CML immunoreactivity was found through out the seminiferous epithelium, the nuclei of spermatogonia and spermatocytes, in the basal and principle cells (cytoplasm and nuclei) of the caput epididymis and on most sperm tails, mid pieces and all cytoplasmic droplets. The acrosomal cap, especially the equatorial band, was prominently stained in diabetic samples only. The amount of CML was significantly higher (p = 0.004) in sperm from non diabetic men. Considering the known detrimental actions of AGEs in other organs, the presence, location and quantity of CML, particularly the increased expression found in diabetic men, suggests that these compounds may play a hitherto unrecognized role in male infertility.