1 resultado para drift retardant
Filtro por publicador
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (2)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (3)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (2)
- Archive of European Integration (1)
- Aston University Research Archive (5)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (37)
- Biodiversity Heritage Library, United States (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (12)
- Brock University, Canada (3)
- CentAUR: Central Archive University of Reading - UK (99)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (1)
- Cochin University of Science & Technology (CUSAT), India (3)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (55)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (14)
- Digital Archives@Colby (1)
- DigitalCommons@The Texas Medical Center (1)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Diposit Digital de la UB - Universidade de Barcelona (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (30)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Georgian Library Association, Georgia (2)
- Instituto Politécnico do Porto, Portugal (9)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (9)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Martin Luther Universitat Halle Wittenberg, Germany (2)
- Massachusetts Institute of Technology (1)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (2)
- Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde (1)
- Publishing Network for Geoscientific & Environmental Data (352)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (1)
- RDBU - Repositório Digital da Biblioteca da Unisinos (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (4)
- Repositório da Produção Científica e Intelectual da Unicamp (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (5)
- REPOSITORIO DIGITAL IMARPE - INSTITUTO DEL MAR DEL PERÚ, Peru (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (46)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (8)
- School of Medicine, Washington University, United States (1)
- Scielo Saúde Pública - SP (38)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (5)
- Universidad del Rosario, Colombia (4)
- Universidad Politécnica de Madrid (5)
- Universidade do Minho (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (7)
- Universitat de Girona, Spain (5)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (78)
- Université de Montréal, Canada (17)
- University of Connecticut - USA (1)
- University of Michigan (13)
- University of Queensland eSpace - Australia (26)
Resumo:
Algorithms for concept drift handling are important for various applications including video analysis and smart grids. In this paper we present decision tree ensemble classication method based on the Random Forest algorithm for concept drift. The weighted majority voting ensemble aggregation rule is employed based on the ideas of Accuracy Weighted Ensemble (AWE) method. Base learner weight in our case is computed for each sample evaluation using base learners accuracy and intrinsic proximity measure of Random Forest. Our algorithm exploits both temporal weighting of samples and ensemble pruning as a forgetting strategy. We present results of empirical comparison of our method with îriginal random forest with incorporated replace-the-looser forgetting andother state-of-the-art concept-drift classiers like AWE2.