29 resultados para design processes
Resumo:
The contemporary dominance of visuality has turned our understanding of space into a mode of unidirectional experience that externalizes other sensual capacities of the body while perceiving the built environment. This affects not only architectural practice but also architectural education when an introduction to the concept of space is often challenging, especially for the students who have limited spatial and sensual training. Considering that an architectural work is not perceived as a series of retinal pictures but as a repeated multi-sensory experience, the problem definitions in the design studio need to be disengaged from the dominance of a ‘focused vision’ and be re-constructed in a holistic manner. A method to address this approach is to enable the students to refer to their own sensual experiences of the built environment as a part of their design processes. This paper focuses on a particular approach to the second year architectural design teaching which has been followed in the Department of Architecture at Izmir University of Economics for the last three years. The very first architectural project of the studio and the program, entitled ‘Sensing Spaces’, is conducted as a multi-staged design process including ‘sense games, analyses of organs and their interpretations into space’. The objectives of this four-week project are to explore the sense of space through the design of a three-dimensional assembly, to create an awareness of the significance of the senses in the design process and to experiment with re-interpreted forms of bodily parts. Hence, the students are encouraged to explore architectural space through their ‘tactile, olfactory, auditory, gustative and visual stimuli’. In this paper, based on a series of examples, architectural space is examined beyond its boundaries of structure, form and function, and spatial design is considered as an activity of re-constructing the built environment through the awareness of bodily senses.
Resumo:
This article provides a rationale for and insight into an explicit children's rights-based approach to the identification of outcomes for proposed educational interventions. It presents a critical reflection on a research project which sought to integrate international children's rights standards into the design of services through a children's rights audit of potential outcomes and the meaningful engagement of children in the research and service design processes. While children are involved increasingly as co-researchers in qualitative studies, it is less common for this to occur in quantitative studies. This article offers some additional insight into children's participation in the interpretation of data from a large-scale baseline survey. The article concludes with an argument that international children's rights law provides not just a legal imperative but also a comprehensive framework with which to assert the case for increased recognition of children as salient stakeholders in all aspects of service design.
Resumo:
The goal of this work is to present an efficient CAD-based adjoint process chain for calculating parametric sensitivities (derivatives of the objective function with respect to the CAD parameters) in timescales acceptable for industrial design processes. The idea is based on linking parametric design velocities (geometric sensitivities computed from the CAD model) with adjoint surface sensitivities. A CAD-based design velocity computation method has been implemented based on distances between discrete representations of perturbed geometries. This approach differs from other methods due to the fact that it works with existing commercial CAD packages (unlike most analytical approaches) and it can cope with the changes in CAD model topology and face labeling. Use of the proposed method allows computation of parametric sensitivities using adjoint data at a computational cost which scales with the number of objective functions being considered, while it is essentially independent of the number of design variables. The gradient computation is demonstrated on test cases for a Nozzle Guide Vane (NGV) model and a Turbine Rotor Blade model. The results are validated against finite difference values and good agreement is shown. This gradient information can be passed to an optimization algorithm, which will use it to update the CAD model parameters.
Resumo:
The aim of this work is to investigate an efficient CAD based adjoint process chain for calculating sensitivities of the objective function to the CAD parameter in time scales acceptable for industrial design processes.
Resumo:
In this paper, a multiloop robust control strategy is proposed based on H∞ control and a partial least squares (PLS) model (H∞_PLS) for multivariable chemical processes. It is developed especially for multivariable systems in ill-conditioned plants and non-square systems. The advantage of PLS is to extract the strongest relationship between the input and the output variables in the reduced space of the latent variable model rather than in the original space of the highly dimensional variables. Without conventional decouplers, the dynamic PLS framework automatically decomposes the MIMO process into multiple single-loop systems in the PLS subspace so that the controller design can be simplified. Since plant/model mismatch is almost inevitable in practical applications, to enhance the robustness of this control system, the controllers based on the H∞ mixed sensitivity problem are designed in the PLS latent subspace. The feasibility and the effectiveness of the proposed approach are illustrated by the simulation results of a distillation column and a mixing tank process. Comparisons between H∞_PLS control and conventional individual control (either H∞ control or PLS control only) are also made
Resumo:
Numerical simulations are used to study the electromagnetic scattering from phase agile microstrip reflectarray cells which exploit the voltage controlled dielectric anisotropy property of nematic state liquid crystals (LC). In the computer model two arrays of equal size elements constructed on a 15?m thick tuneable LC layer were designed to operate at centre frequencies of 102 GHz and 130 GHz. Micromachining processes based on the metallization of quartz/silicon wafers and an industry compatible LCD packaging technique were employed to fabricate the grounded periodic structures. The loss and phase of the reflected signals were measured using a quasi-optical test bench with the reflectarray cells inserted at the beam waist of the imaged Gaussian beam, thus eliminating some of the major problems associated with traditional free-space characterisation at these frequencies. By applying a low frequency AC bias voltage of 10 V, a 165o phase shift with a loss 4.5 dB-6.4 dB at 102 GHz and 130o phase shift with a loss variation between 4.3 dB – 7 dB at 130 GHz was obtained. The experimental results are shown to be in close agreement with the computer model.
Resumo:
We extend the contingent valuation (CV) method to test three differing conceptions of individuals' preferences as either (i) a-priori well-formed or readily divined and revealed through a single dichotomous choice question (as per the NOAA CV guidelines [K. Arrow, R. Solow, P.R. Portney, E.E. Learner, R. Radner, H. Schuman, Report of the NOAA panel on contingent valuation, Fed. Reg. 58 (1993) 4601-4614]); (ii) learned or 'discovered' through a process of repetition and experience [J.A. List, Does market experience eliminate market anomalies? Q. J. Econ. (2003) 41-72; C.R. Plott, Rational individual behaviour in markets and social choice processes: the discovered preference hypothesis, in: K. Arrow, E. Colombatto, M. Perleman, C. Schmidt (Eds.), Rational Foundations of Economic Behaviour, Macmillan, London, St. Martin's, New York, 1996, pp. 225-250]; (iii) internally coherent but strongly influenced by some initial arbitrary anchor [D. Ariely, G. Loewenstein, D. Prelec, 'Coherent arbitrariness': stable demand curves without stable preferences, Q. J. Econ. 118(l) (2003) 73-105]. Findings reject both the first and last of these conceptions in favour of a model in which preferences converge towards standard expectations through a process of repetition and learning. In doing so, we show that such a 'learning design CV method overturns the 'stylised facts' of bias and anchoring within the double bound dichotomous choice elicitation format. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
Germanium NPN bipolar transistors have been manufactured using phosphorus and boron ion implantation processes. Implantation and subsequent activation processes have been investigated for both dopants. Full activation of phosphorus implants has been achieved with RTA schedules at 535?C without significant junction diffusion. However, boron implant activation was limited and diffusion from a polysilicon source was not practical for base contact formation. Transistors with good output characteristics were achieved with an Early voltage of 55V and common emitter current gain of 30. Both Silvaco process and device simulation tools have been successfully adapted to model the Ge BJT(bipolar junction transistor) performance.
Resumo:
Background: One-carbon metabolism involves both mitochondrial and cytosolic forms of folate-dependent enzymes in mammalian cells, but few in vivo data exist to characterize the biochemical processes involved.
Objective: We conducted a stable-isotopic investigation to determine the fates of exogenous serine and serine-derived one carbon units in homocysteine remethylation in hepatic and whole-body metabolism.
Design: A healthy man aged 23 y was administered [2,3,3 H-2(3)]serine and [5,5,5-H-2(3)]leucine by intravenous primed, constant infusion. Serial plasma samples were analyzed to determine the isotopic enrichment of free glycine, serine, leucine, methionine, and cystathionine. VLDL apolipoprotein B-100 served as an index of liver free amino acid labeling.
Results: [H-2(1)]Methionine and [H-2(2)]methionine were labeled through homocysteine remethylation. We propose that [H-2(2)]methionine occurs by remethylation with [H-2(2)]methyl groups (as 5-methyltetrahydrofolate) formed only from cytosolic processing of [H-2(3)]serine, whereas [H-2(1)]methionine is formed with labeled one-carbon units from mitochondrial oxidation of C-3 serine to [H-2(1)]formate to yield cytosolic [H-2(1)]methyl groups. The labeling pattern of cystathionine formed from homocysteine and labeled serine suggests that cystathionine is derived mainly from a serine pool different from that used in apolipoprotein B-100 synthesis.
Conclusions: The appearance of both [H-2(1)]- and [H-2(2)]methionine forms indicates that both cytosolic and mitochondrial metabolism of exogenous serine generates carbon units in vivo for methyl group production and homocysteine remethylation. This study also showed the utility of serine infusion and indicated functional roles of cytosolic and mitochondrial compartments in one-carbon metabolism.
Resumo:
This paper examines the applicability of a digital manufacturing framework to the implementation of a Value Driven Design (VDD) approach for the development of a stiffened composite panel. It presents a means by which environmental considerations can be integrated with conventional product and process design drivers within a customized, digital environment. A composite forming process is used as an exemplar for the work which creates a collaborative environment for the integration of more traditional design drivers with parameters related to manufacturability as well as more sustainable processes and products. The environmental stakeholder is introduced to the VDD process through a customized product/process/resource (PPR) environment where application specific power consumption and material waste data has been measured and characterised in the process design interface. This allows the manufacturing planner to consider power consumption as a concurrent design driver and the inclusion of energy as a parameter in a VDD approach to the development of efficiently manufactured, sustainable transport systems.