40 resultados para data acquisition system
Resumo:
The injection stretch blow moulding process is used to manufacture PET containers used in the soft drinks and carbonated soft drinks industry. The process consists of a test tube like specimen known as a preform which is heated, stretch and blown into a mould to form the container. This research is focused on developing a validated simulation of the process thus enabling manufacturers to design their products in a virtual environment without the need to waste time, material and energy. The simulation has been developed using the commercial FEA package Abaqus and has been validated using state of the art data acquisition system consisting of measurements for preform temperature (inner and outer wall) using a device known as THERMOscan (Figure 1), stretch rod force and velocity, internal pressure and air temperature inside the preform using an instrumented stretch rod and the?exact?timing of when the preform touches the mould wall using contact sensors.? In addition, validation studies have also been performed by blowing a perform without a mould and using high sped imaging technology in cooperation with an advanced digital image correlation system (VIC 3D) to provided new quantitative information on the behaviour of PET during blowing.? The approach has resulted in a realistic simulation in terms of accurate input parameters, preform shape evolution and prediction of final properties.
Resumo:
The commonly used British Standard constant head triaxial permeability test for testing of fine-grained soils is relatively time consuming. A reduction in the required time for soil permeability testing would provide potential cost savings to the construction industry, particularly in the construction quality assurance of landfill clay liners. The purpose of this paper is to evaluate an alternative approach of measuring permeability of fine-grained soils benefiting from accelerated time scaling for seepage flow when testing specimens in elevated gravity conditions provided by a centrifuge. As part of the investigation, an apparatus was designed and produced to measure water flow through soil samples under conditions of elevated gravitational acceleration using a small desktop laboratory centrifuge. A membrane was used to hydrostatically confine the test sample. A miniature data acquisition system was designed and incorporated in the apparatus to monitor and record changes in head and flow throughout the tests. Under enhanced gravity in the centrifuge, the flow through the sample was under ‘variable head' conditions as opposed to ‘constant head' conditions as in the classic constant head permeability tests conducted at 1 g . A mathematical model was developed for analysis of Darcy's coefficient of permeability under conditions of elevated gravitational acceleration and verified using the results obtained. The test data compare well with the results on analogous samples obtained using the classical British Standard constant head permeability tests.
Resumo:
The temperature at which densification ends for a range of blends comprising a metallocene catalysed medium density polyethylene (PE) in two different physical forms (powder and micropellets) were investigated using a novel data acquisition system (TP Picture®), developed by Total Petrochemicals [1]. The various blends were subsequently rotomoulded and test specimens prepared for mechanical analysis to establish the relationship between densification rate and bubble size / distribution on the part properties. The micropellets exhibited more rapid bubble removal times than powder.
Resumo:
Indirect bridge monitoring methods, using the responses measured from vehicles passing over bridges, are under development for about a decade. A major advantage of these methods is that they use sensors mounted on the vehicle, no sensors or data acquisition system needs to be installed on the bridge. Most of the proposed methods are based on the identification of dynamic characteristics of the bridge from responses measured on the vehicle, such as natural frequency, mode shapes, and damping. In addition, some of the methods seek to directly detect bridge damage based on the interaction between the vehicle and bridge. This paper presents a critical review of indirect methods for bridge monitoring and provides discussion and recommendations on the challenges to be overcome for successful implementation in practice.
Resumo:
Double beam modulation is widely used in atomic collision experiments in the case where the noise arising froth each of the beams exceeds the measured signal. A method for minimizing the statistical uncertainty in a measured signal in a given time period is discussed, and a flexible modulation and counting system based on a low cost PIC microcontroller is described. This device is capable of modifying the acquisition parameters in real time during the course of an experimental run. It is shown that typical savings in data acquisition time of approximately 30% can be achieved using this optimized modulation scheme.
Resumo:
Capillary-based systems for measuring the input impedance of musical wind instruments were first developed in the mid-20th century and remain in widespread use today. In this paper, the basic principles and assumptions underpinning the design of such systems are examined. Inexpensive modifications to a capillary-based impedance measurement set-up made possible due to advances in computing and data acquisition technology are discussed. The modified set-up is able to measure both impedance magnitude and impedance phase even though it only contains one microphone. In addition, a method of calibration is described that results in a significant improvement in accuracy when measuring high impedance objects on the modified capillary-based system. The method involves carrying out calibration measurements on two different objects whose impedances are well-known theoretically. The benefits of performing two calibration measurements (as opposed to the one calibration measurement that has been traditionally used) are demonstrated experimentally through input impedance measurements on two test objects and a Boosey and Hawkes oboe. © S. Hirzel Verlag · EAA.
Resumo:
Increased complexity and interconnectivity of Supervisory Control and Data Acquisition (SCADA) systems in Smart Grids potentially means greater susceptibility to malicious attackers. SCADA systems with legacy communication infrastructure have inherent cyber-security vulnerabilities as these systems were originally designed with little consideration of cyber threats. In order to improve cyber-security of SCADA networks, this paper presents a rule-based Intrusion Detection System (IDS) using a Deep Packet Inspection (DPI) method, which includes signature-based and model-based approaches tailored for SCADA systems. The proposed signature-based rules can accurately detect several known suspicious or malicious attacks. In addition, model-based detection is proposed as a complementary method to detect unknown attacks. Finally, proposed intrusion detection approaches for SCADA networks are implemented and verified using a ruled based method.
Resumo:
Increased complexity and interconnectivity of Supervisory Control and Data Acquisition (SCADA) systems in Smart Grids potentially means greater susceptibility to malicious attackers. SCADA systems with legacy communication infrastructure have inherent cyber-security vulnerabilities as these systems were originally designed with little consideration of cyber threats. In order to improve cyber-security of SCADA networks, this paper presents a rule-based Intrusion Detection System (IDS) using a Deep Packet Inspection (DPI) method, which includes signature-based and model-based approaches tailored for SCADA systems. The proposed signature-based rules can accurately detect several known suspicious or malicious attacks. In addition, model-based detection is proposed as a complementary method to detect unknown attacks. Finally, proposed intrusion detection approaches for SCADA networks are implemented and verified via Snort rules.
Resumo:
The impact of power fluctuations arising from fixed-speed wind turbines on the magnitude and frequency of inter-area oscillations has been investigated. The authors introduced data acquisition equipment to record the power flow on the interconnector between the Northern Ireland and Republic of Ireland systems. Through monitoring the interconnector oscillation using a fast Fourier transform, it was possible to determine the magnitude and frequency of the inter-area oscillation between the two systems. The impact of tower shadow on the output power from a wind farm was analysed using data recorded on site. A case study investigates the effect on the system of the removal of a large fixed-speed wind farm. Conclusions are drawn on the impact that conventional generation and the output from fixed-speed wind farms have on the stability of the Irish power system.
Resumo:
The increased interconnectivity and complexity of supervisory control and data acquisition (SCADA) systems in power system networks has exposed the systems to a multitude of potential vulnerabilities. In this paper, we present a novel approach for a next-generation SCADA-specific intrusion detection system (IDS). The proposed system analyzes multiple attributes in order to provide a comprehensive solution that is able to mitigate varied cyber-attack threats. The multiattribute IDS comprises a heterogeneous white list and behavior-based concept in order to make SCADA cybersystems more secure. This paper also proposes a multilayer cyber-security framework based on IDS for protecting SCADA cybersecurity in smart grids without compromising the availability of normal data. In addition, this paper presents a SCADA-specific cybersecurity testbed to investigate simulated attacks, which has been used in this paper to validate the proposed approach.
Resumo:
The power system of the future will have a hierarchical structure created by layers of system control from via regional high-voltage transmission through to medium and low-voltage distribution. Each level will have generation sources such as large-scale offshore wind, wave, solar thermal, nuclear directly connected to this Supergrid and high levels of embedded generation, connected to the medium-voltage distribution system. It is expected that the fuel portfolio will be dominated by offshore wind in Northern Europe and PV in Southern Europe. The strategies required to manage the coordination of supply-side variability with demand-side variability will include large scale interconnection, demand side management, load aggregation and storage in the concept of the Supergrid combined with the Smart Grid. The design challenge associated with this will not only include control topology, data acquisition, analysis and communications technologies, but also the selection of fuel portfolio at a macro level. This paper quantifies the amount of demand side management, storage and so-called ‘back-up generation’ needed to support an 80% renewable energy portfolio in Europe by 2050.
Resumo:
Emerging cybersecurity vulnerabilities in supervisory control and data acquisition (SCADA) systems are becoming urgent engineering issues for modern substations. This paper proposes a novel intrusion detection system (IDS) tailored for cybersecurity of IEC 61850 based substations. The proposed IDS integrates physical knowledge, protocol specifications and logical behaviours to provide a comprehensive and effective solution that is able to mitigate various cyberattacks. The proposed approach comprises access control detection, protocol whitelisting, model-based detection, and multi-parameter based detection. This SCADA-specific IDS is implemented and validated using a comprehensive and realistic cyber-physical test-bed and data from a real 500kV smart substation.