179 resultados para cytokine receptors
Resumo:
Recent experimental evidence has challenged the paradigm according to which radiation traversal through the nucleus of a cell is a prerequisite for producing genetic changes or biological responses. Thus, unexposed cells in the vicinity of directly irradiated cells or recipient cells of medium from irradiated cultures can also be affected. The aim of the present study was to evaluate, by means of the medium transfer technique, whether interleukin-8 and its receptor (CXCR1) may play a role in the bystander effect after gamma irradiation of T98G cells in vitro. In fact the cell specificity in inducing the bystander effect and in receiving the secreted signals that has been described suggests that not only the ability to release the cytokines but also the receptor profiles are likely to modulate the cell responses and the final outcome. The dose and time dependence of the cytokine release into the medium, quantified using an enzyme linked immunosorbent assay, showed that radiation causes alteration in the release of interleukin-8 from exposed cells in a dose-independent but time-dependent manner. The relative receptor expression was also affected in exposed and bystander cells.
Resumo:
CD33 is a member of the sialic acid–binding immunoglobulin-like lectin (Siglec) family of inhibitory receptors and a therapeutic target for acute myeloid leukemia (AML). CD33 contains a cytoplasmic immunoreceptor tyrosine-based inhibitory motif (ITIM), which can recruit SHP-1 and SHP-2. How CD33 expression is regulated is unclear. Suppressor of cytokine signaling 3 (SOCS3) is expressed in response to cytokines, LPS, and other PAMPs, and competes with SHP-1/2 binding to ITIMs of cytokine receptors, thereby inhibiting signaling. In this study, using peptide pull-down experiments, we found that SOCS3 can specifically bind to the phosphorylated ITIM of CD33. Additionally, following cross-linking SOCS3 can recruit the ECS E3 ligase resulting in accelerated proteasomal degradation of both CD33 and SOCS3. Our data suggest that the tyrosine motifs in CD33 are not important for internalization, while they are required for degradation. Moreover, SOCS3 inhibited the CD33-induced block on cytokine-induced proliferation. This is the first receptor shown to be degraded by SOCS3 and where SOCS3 and its target protein are degraded concomitantly. Our findings clearly suggest that during an inflammatory response, the inhibitory receptor CD33 is lost by this mechanism. Moreover, this has important clinical implications as tumors expressing SOCS3 may be refractory to -CD33 therapy.
Resumo:
CD33-related Siglecs (sialic acid-binding immunoglobulin-like lectins) 5–11 are inhibitory receptors that contain a membrane proximal ITIM (immunoreceptor tyrosine-based inhibitory motif) (I/V/L/)XYXX(L/V), which can recruit SHP-1/2. However, little is known about the regulation of these receptors. SOCS3 (suppressor of cytokine signaling 3) is up-regulated during inflammation and competes with SHP-1/2 for binding to ITIM-like motifs on various cytokine receptors resulting in inhibition of signaling. We show that SOCS3 binds the phosphorylated ITIM of Siglec 7 and targets it for proteasomal-mediated degradation, suggesting that Siglec 7 is a novel SOCS target. Following ligation, the ECS E3 ligase is recruited by SOCS3 to target Siglec 7 for proteasomal degradation, and SOCS3 expression is decreased concomitantly. In addition, we found that SOCS3 expression blocks Siglec 7-mediated inhibition of cytokine-induced proliferation. This is the first time that a SOCS target has been reported to degrade simultaneously with the SOCS protein and that inhibitory receptors have been shown to be degraded in this way. This may be a mechanism by which the inflammatory response is potentiated during infection.
Resumo:
Background: Natural Killer Cells (NK) play an important role in detection and elimination of virus-infected, damaged or cancer cells. NK cell function is guided by expression of Killer Immunoglobulin-like Receptors (KIRs) and contributed to by the cytokine milieu. KIR molecules are grouped on NK cells into stimulatory and inhibitory KIR haplotypes A and B, through which NKs sense and tolerate HLA self-antigens or up-regulate the NK-cytotoxic response to cells with altered HLA self-antigens, damaged by viruses or tumours. We have previously described increased numbers of NK and NK-related subsets in association with sIL-2R cytokine serum levels in BELFAST octo/nonagenarians. We hypothesised that changes in KIR A and B haplotype gene frequencies could explain the increased cytokine profiles and NK compartments previously described in Belfast Elderly Longitudinal Free-living Aging STudy (BELFAST) octo/nonagenarians, who show evidence of ageing well.
Results: In the BELFAST study, 24% of octo/nonagenarians carried the KIR A haplotype and 76% KIR B haplotype with no differences for KIR A haplogroup frequency between male or female subjects (23% v 24%; p=0.88) or for KIR B haplogroup (77% v 76%; p=0.99). Octo/nonagenarian KIR A haplotype carriers showed increased NK numbers and percentage compared to Group B KIR subjects (p=0.003; p=0.016 respectively). There were no KIR A/ B haplogroup-associated changes for related CD57+CD8 (high or low) subsets. Using logistic regression, KIR B carriers were predicted to have higher IL-12 cytokine levels compared to KIR A carriers by about 3% (OR 1.03, confidence limits CI 0.99–1.09; p=0.027) and 14% higher levels for TGF-ß (active), a cytokine with an anti-inflammatory role, (OR 1.14, confidence limits CI 0.99–1.09; p=0.002).
Conclusion: In this observational study, BELFAST octo/nonagenarians carrying KIR A haplotype showed higher NK cell numbers and percentage compared to KIR B carriers. Conversely, KIR B haplotype carriers, with genes encoding for activating KIRs, showed a tendency for higher serum pro-inflammatory cytokines compared to KIR A carriers. While the findings in this study should be considered exploratory they may serve to stimulate debate about the immune signatures of those who appear to age slowly and who represent a model for good quality survivor-hood.© 2013 Rea et al.; licensee BioMed Central Ltd.
Resumo:
Background: There are reports with conflicting results on the expression of toll-like receptors (TLRs) in trauma patients. In addition, these studies analyzed TLR expression only at patients hospital admission but not later when complications usually arise. Objectives: To analyze the surface expression of TLR2 and TLR4 on circulating monocytes from trauma patients during the hospitalization period and to correlate this with cytokine production after stimulation with TLR2 and TLR4 agonists. The phagocytic capacity of monocytes was analyzed at the same time points of TLR expression analysis; to correlate these molecular findings with the presence or absence of infections. Methods: Prospective and observational study from June 2005 to June 2007. In all analysis, a control group composed of healthy subjects was included. Results: We studied 70 trauma patients admitted to the intensive care unit (ICU) of a tertiary hospital, and 30 healthy volunteers. Blood samples were collected at hospital admission, on day 7 and 14. Forty-four patients (63%) developed at least one episode of infection. Monocytes from trauma patients expressed higher levels of TLR2 and TLR4 than monocytes from control subjects at all time points. Expression of TLR2 and TLR4 in monocytes from those patients who developed any infection was significantly lower than in those patients without infection but still significantly higher than in control subjects. Cellular responses to TLR4 agonist were impaired. Monocytes from traumatic patients phagocytosized less efficiently than monocytes from control subjects. Conclusions: These results indicate that trauma patients present a dysregulation of the innate immune system that persists during the first 14 days after hospital admission. Copyright © 2010 by Lippincott Williams & Wilkins.
Resumo:
Spontaneous Ca2+ sparks were observed in fluo 4-loaded myocytes from guinea pig vas deferens with line-scan confocal imaging. They were abolished by ryanodine (100 microM), but the inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) blockers 2-aminoethoxydiphenyl borate (2-APB; 100 microM) and intracellular heparin (5 mg/ml) increased spark frequency, rise time, duration, and spread. Very prolonged Ca2+ release events were also observed in approximately 20% of cells treated with IP3R blockers but not under control conditions. 2-APB and heparin abolished norepinephrine (10 microM; 0 Ca2+)-evoked Ca2+ transients but increased caffeine (10 mM; 0 Ca2+) transients in fura 2-loaded myocytes. Transients evoked by ionomycin (25 microM; 0 Ca2+) were also enhanced by 2-APB. Ca2+ sparks and transients evoked by norepinephrine and caffeine were abolished by thimerosal (100 microM), which sensitizes the IP3R to IP3. In cells voltage clamped at -40 mV, spontaneous transient outward currents (STOCs) were increased in frequency, amplitude, and duration in the presence of 2-APB. These data are consistent with a model in which the Ca2+ store content in smooth muscle is limited by tonic release of Ca2+ via an IP3-dependent pathway. Blockade of IP3Rs elevates sarcoplasmic reticulum store content, promoting Ca2+ sparks and STOC activity.