36 resultados para cutting format
Resumo:
Recent research on the delayed failure of cuttings in clay clearly recognises and predicts progressive delayed failure of deep cuttings. This is due to a combination of strain-softening, weathering, dissipation of negative excess pore water pressure generated at the time of excavation, and frequent occurrence of prolonged periods of wet weather. There have been several slope failures of this kind in Northern Ireland. This paper discusses a case study based on a failure of a deep cutting, excavated at a slope of 1 in 2, on the A1 near Dromore (County Down) in Northern Ireland. The cutting was in lodgement till, a stiff, heavily overconsolidated clay. The failure occurred approximately 30 years after the cutting was excavated, following a prolonged period of heavy rainfall. An analysis of the failure, together with laboratory test data on soil samples taken from the site, confirmed that by using long-term soil strength parameters the factor of safety of this slope was unity. The conclusion of the analysis is that slopes excavated in this soil should be designed (and assessed) on long-term strength parameters.
Resumo:
Traditionally, the Internet provides only a “best-effort” service, treating all packets going to the same destination equally. However, providing differentiated services for different users based on their quality requirements is increasingly becoming a demanding issue. For this, routers need to have the capability to distinguish and isolate traffic belonging to different flows. This ability to determine the flow each packet belongs to is called packet classification. Technology vendors are reluctant to support algorithmic solutions for classification due to their non-deterministic performance. Although CAMs are favoured by technology vendors due to their deterministic high lookup rates, they suffer from the problems of high power dissipation and high silicon cost. This paper provides a new algorithmic-architectural solution for packet classification that mixes CAMs with algorithms based on multi-level cutting the classification space into smaller spaces. The provided solution utilizes the geometrical distribution of rules in the classification space. It provides the deterministic performance of CAMs, support for dynamic updates, and added flexibility for system designers.
Resumo:
Topical transcutaneous immunization (TCI) presents many clinical advantages, but its underlying mechanism remains unknown. TCI induced Ag-specific IgA Ab-secreting cells expressing CCR9 and CCR10 in the small intestine in a retinoic acid-dependent manner. These intestinal IgA Abs were maintained in Peyer\'s patch-null mice but abolished in the Peyer\'s patch- and lymph node-null mice. The mesenteric lymph node (MLN) was shown to be the site of IgA isotype class switching after TCI. Unexpectedly, langerin(+)CD8alpha(-) dendritic cells emerged in the MLN after TCI; they did not migrate from the skin but rather differentiated rapidly from bone marrow precursors. Depletion of langerin(+) cells impaired intestinal IgA Ab responses after TCI. Taken together, these findings suggest that MLN is indispensable for the induction of intestinal IgA Abs following skin immunization and that cross-talk between the skin and gut immune systems might be mediated by langerin(+) dendritic cells in the MLN.
Resumo:
Since the publication of Hobsbawm and Rudé's Captain Swing our understanding of the role(s) of covert protests in Hanoverian rural England has advanced considerably. Whilst we now know much about the dramatic practices of incendiarism and animal maiming and the voices of resistance in seemingly straightforward acquisitive acts, one major gap remains. Despite the fact that almost thirty years have passed since E. P. Thompson brought to our attention that under the notorious ‘Black Act’ the malicious cutting of trees was a capital offence, no subsequent research has been published. This paper seeks to address this major lacuna by systematically analysing the practices and patterns of malicious attacks on plants (‘plant maiming’) in the context of late eighteenth- and early nineteenth-century southern England. It is shown that not only did plant maiming take many different forms, attacking every conceivable type of flora, but also that it was universally understood and practised. In some communities plant maiming was the protestors' weapon of choice. As a social practice it therefore embodied wider community beliefs regarding the defence of plebeian livelihoods and identities.
Resumo:
Traditionally, the Internet provides only a “best-effort” service, treating all packets going to the same destination equally. However, providing differentiated services for different users based on their quality requirements is increasingly becoming a demanding issue. For this, routers need to have the capability to distinguish and isolate traffic belonging to different flows. This ability to determine the flow each packet belongs to is called packet classification. Technology vendors are reluctant to support algorithmic solutions for classification due to their nondeterministic performance. Although content addressable memories (CAMs) are favoured by technology vendors due to their deterministic high-lookup rates, they suffer from the problems of high-power consumption and high-silicon cost. This paper provides a new algorithmic-architectural solution for packet classification that mixes CAMs with algorithms based on multilevel cutting of the classification space into smaller spaces. The provided solution utilizes the geometrical distribution of rules in the classification space. It provides the deterministic performance of CAMs, support for dynamic updates, and added flexibility for system designers.
Resumo:
GM-CSF is a potent proinflammatory cytokine that plays a pathogenic role in the CNS inflammatory disease experimental autoimmune encephalomyelitis. As IL-27 alleviates experimental autoimmune encephalomyelitis, we hypothesized that IL-27 suppresses GM-CSF expression by T cells. We found that IL-27 suppressed GM-CSF expression in CD4+ and CD8+ T cells in splenocyte and purified T cell cultures. IL-27 suppressed GM-CSF in Th1, but not Th17, cells. IL-27 also suppressed GM-CSF expression by human T cells in nonpolarized and Th1- but not Th17-polarized PBMC cultures. In vivo, IL-27p28 deficiency resulted in increased GM-CSF expression by CNS-infiltrating T cells during Toxoplasma gondii infection. Although in vitro suppression of GM-CSF by IL-27 was independent of IL-2 suppression, IL-10 upregulation, or SOCS3 signaling, we observed that IL-27-driven suppression of GM-CSF was STAT1 dependent. Our findings demonstrate that IL-27 is a robust negative regulator of GM-CSF expression in T cells, which likely inhibits T cell pathogenicity in CNS inflammation.
Resumo:
3C–SiC (the only polytype of SiC that resides in a diamond cubic lattice structure) is a relatively new material that exhibits most of the desirable engineering properties required for advanced electronic applications. The anisotropy exhibited by 3C–SiC during its nanometric cutting is significant, and the potential for its exploitation has yet to be fully investigated. This paper aims to understand the influence of crystal anisotropy of 3C–SiC on its cutting behaviour. A molecular dynamics simulation model was developed to simulate the nanometric cutting of single-crystal 3C–SiC in nine (9) distinct combinations of crystal orientations and cutting directions, i.e. (1?1?1) <-1?1?0>, (1?1?1) <-2?1?1>, (1?1?0) <-1?1?0>, (1?1?0) <0?0?1>, (1?1?0) <1?1?-2>, (0?0?1) <-1?1?0>, (0?0?1) <1?0?0>, (1?1?-2) <1?-1?0> and (1?-2?0) <2?1?0>.
In order to ensure the reliability of the simulation results, two separate simulation trials were carried out with different machining parameters. In the first trial, a cutting tool rake angle of -25°, d/r (uncut chip thickness/cutting edge radius) ratio of 0.57 and cutting velocity of 10 m s-1 were used whereas a second trial was done using a cutting tool rake angle of -30°, d/r ratio of 1 and cutting velocity of 4 m s-1. Both the trials showed similar anisotropic variation.
The simulated orthogonal components of thrust force in 3C–SiC showed a variation of up to 45%, while the resultant cutting forces showed a variation of 37%. This suggests that 3C–SiC is highly anisotropic in its ease of deformation. These results corroborate with the experimentally observed anisotropic variation of 43.6% in Young's modulus of 3C–SiC. The recently developed dislocation extraction algorithm (DXA) [1, 2] was employed to detect the nucleation of dislocations in the MD simulations of varying cutting orientations and cutting directions. Based on the overall analysis, it was found that 3C–SiC offers ease of deformation on either (1?1?1) <-1?1?0>, (1?1?0) <0?0?1>, or (1?0?0) <1?0?0> setups.
Resumo:
The shear instability of the nanoscrystalline 3C-SiC during nanometric cutting at a cutting speed of 100?m/s has been investigated using molecular dynamics simulation. The deviatoric stress in the cutting zone was found to cause sp3-sp2 disorder resulting in the local formation of SiC-graphene and Herzfeld-Mott transitions of 3C-SiC at much lower transition pressures than that required under pure compression. Besides explaining the ductility of SiC at 1500?K, this is a promising phenomenon in general nanoscale engineering of SiC. It shows that modifying the tetrahedral bonding of 3C-SiC, which would otherwise require sophisticated pressure cells, can be achieved more easily by introducing non-hydrostatic stress conditions.