2 resultados para cause related marketing
Resumo:
A biomarker can be a substance or structure measured in body parts, fluids or products that can affect or predict disease incidence. As age-related macular degeneration (AMD) is the leading cause of blindness in the developed world, much research and effort has been invested in the identification of different biomarkers to predict disease incidence, identify at risk individuals, elucidate causative pathophysiological etiologies, guide screening, monitoring and treatment parameters, and predict disease outcomes. To date, a host of genetic, environmental, proteomic, and cellular targets have been identified as both risk factors and potential biomarkers for AMD. Despite this, their use has been confined to research settings and has not yet crossed into the clinical arena. A greater understanding of these factors and their use as potential biomarkers for AMD can guide future research and clinical practice. This article will discuss known risk factors and novel, potential biomarkers of AMD in addition to their application in both academic and clinical settings.
Resumo:
Identifying 20th-century periodic coastal surge variation is strategic for the 21st-century coastal surge estimates, as surge periodicities may amplify/reduce future MSL enhanced surge forecasts. Extreme coastal surge data from Belfast Harbour (UK) tide gauges are available for 1901–2010 and provide the potential for decadal-plus periodic coastal surge analysis. Annual extreme surge-elevation distributions (sampled every 10-min) are analysed using PCA and cluster analysis to decompose variation within- and between-years to assess similarity of years in terms of Surge Climate Types, and to establish significance of any transitions in Type occurrence over time using non-parametric Markov analysis. Annual extreme surge variation is shown to be periodically organised across the 20th century. Extreme surge magnitude and distribution show a number of significant cyclonic induced multi-annual (2, 3, 5 & 6 years) cycles, as well as dominant multi-decadal (15–25 years) cycles of variation superimposed on an 80 year fluctuation in atmospheric–oceanic variation across the North Atlantic (relative to NAO/AMO interaction). The top 30 extreme surge events show some relationship with NAO per se, given that 80% are associated with westerly dominant atmospheric flows (+ NAO), but there are 20% of the events associated with blocking air massess (− NAO). Although 20% of the top 30 ranked positive surges occurred within the last twenty years, there is no unequivocal evidence of recent acceleration in extreme surge magnitude related to other than the scale of natural periodic variation.