26 resultados para cardiac structure and function


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Here we consider the role of abstract models in advancing our understanding of movement pathology. Models of movement coordination and control provide the frameworks necessary for the design and interpretation of studies of acquired and developmental disorders. These models do not however provide the resolution necessary to reveal the nature of the functional impairments that characterise specific movement pathologies. In addition, they do not provide a mapping between the structural bases of various pathologies and the associated disorders of movement. Current and prospective approaches to the study and treatment of movement disorders are discussed. It is argued that the appreciation of structure-function relationships, to which these approaches give rise, represents a challenge to current models of interlimb coordination, and a stimulus for their continued development. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

P>The current paper provides an overview of current knowledge on the structure and function of the eye. It describes in depth the different parts of the eye that are involved in the ocular manifestations seen in the mucopolysaccharidoses (MPS). The MPS are a group of rare inheritable lysosomal storage disorders characterized by the accumulation of glycosaminoglycans (GAGs) in cells and tissues all over the body, leading to widespread tissue and organ dysfunction. GAGs also tend to accumulate in several tissues of the eye, leading to various ocular manifestations affecting both the anterior (cornea, conjunctiva) and the posterior parts (retina, sclera, optic nerve) of the eye.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Parasitic worms come from two very different phyla-Platyhelminthes (flatworms) and Nematoda (roundworms). Although both phyla possess nervous systems with highly developed peptidergic components. there are key differences in the structure and action of native neuropeptides in the two groups. For example, the most abundant neuropeptide known in platyhelminths is the pancreatic polypeptide-like neuropeptide F, whereas the most prevalent neuropeptides in nematodes an FMRFamide-related peptides (FaRPs), which are also present in platyhelminths. With respect to neuropeptide diversity, platyhelminth species possess only one or two distinct FaRPs, whereas nematodes have upwards of 50 unique FaRPs. FaRP bioactivity in platyhelminths appears to be restricted to myoexcitation, whereas both excitatory and inhibitory effects have been reported in nematodes. Recently interest has focused on the peptidergic signaling systems of both phyla because elucidation of these systems will do much to clarify the basic biology of the worms and because the peptidergic systems hold the promise of yielding novel targets for a new generation of antiparasitic drugs. (C) 1999 Elsevier Science Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The barrier imposed by lipopolysaccharide (LPS) in the outer membrane of Gram-negative bacteria presents a significant challenge in treatment of these organisms with otherwise effective hydrophobic antibiotics. The absence of L-glycero-D-manno-heptose in the LPS molecule is associated with a dramatically increased bacterial susceptibility to hydrophobic antibiotics and thus enzymes in the ADP-heptose biosynthesis pathway are of significant interest. GmhA catalyzes the isomerization of D-sedoheptulose 7-phosphate into D-glycero-D-manno-heptose 7-phosphate, the first committed step in the formation of ADP-heptose. Here we report structures of GmhA from Escherichia coli and Pseudomonas aeruginosa in apo, substrate, and product-bound forms, which together suggest that GmhA adopts two distinct conformations during isomerization through reorganization of quaternary structure. Biochemical characterization of GmhA mutants, combined with in vivo analysis of LPS biosynthesis and novobiocin susceptibility, identifies key catalytic residues. We postulate GmhA acts through an enediol-intermediate isomerase mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

G protein-coupled receptors (GPCRs) are a large superfamily of signaling proteins expressed on the plasma membrane. They are involved in a wide range of physiological processes and, therefore, are exploited as drug targets in a multitude of therapeutic areas. In this extent, knowledge of structural and functional properties of GPCRs may greatly facilitate rational design of modulator compounds. Solution and solid-state nuclear magnetic resonance (NMR) spectroscopy represents a powerful method to gather atomistic insights into protein structure and dynamics. In spite of the difficulties inherent the solution of the structure of membrane proteins through NMR, these methods have been successfully applied, sometimes in combination with molecular modeling, to the determination of the structure of GPCR fragments, the mapping of receptor-ligand interactions, and the study of the conformational changes associated with the activation of the receptors. In this review, we provide a summary of the NMR contributions to the study of the structure and function of GPCRs, also in light of the published crystal structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Helminth parasites (nematodes, flatworms and cestodes) infect over 1 billion of the world's population causing high morbidity and mortality. The large tissue-dwelling worms express papain-like cysteine peptidases, termed cathepsins that play important roles in virulence including host entry, tissue migration and the suppression of host immune responses. Much of our knowledge of helminth cathepsins comes from studies using flatworms or trematode (fluke) parasites. The developmentally-regulated expression of these proteases correlates with the passage of parasites through host tissues and their encounters with different host macromolecules. Recent phylogenetic, biochemical and structural studies indicate that trematode cathepsins exhibit overlapping but distinct substrate specificities due to divergence within the protease active site. Here we provide an overview of the evolution, biochemistry and structure of these important enzymes and highlight how recent advances in proteomics and gene silencing techniques are allowing researchers to probe their biological functions. We focus mainly on members of the cathepsin L gene family of the animal and human pathogen, Fasciola hepatica, because of our deep understanding of their function, biochemistry and structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although soil algae are among the main primary producers in most terrestrial ecosystems of continental Antarctica, there are very few quantitative studies on their relative proportion in the main algal groups and on how their distribution is affected by biotic and abiotic factors. Such knowledge is essential for understanding the functioning of Antarctic terrestrial ecosystems. We therefore analyzed biological soil crusts from northern Victoria Land to determine their pH, electrical conductivity (EC) water content (W), total and organic C (TC and TOC) and total N (TN) contents, and the presence and abundance of photosynthetic pigments. In particular, the latter were tested as proxies for biomass and coarse-resolution community structure. Soil samples were collected from five sites with known soil algal communities and the distribution of pigments was shown to reflect differences in the relative proportions of Chlorophyta, Cyanophyta and Bacillariophyta in these sites. Multivariate and univariate models strongly indicated that almost all soil variables (EC, W, TOC and TN) were important environmental correlates of pigment distribution. However, a significant amount of variation is independent of these soil variables and may be ascribed to local variability such as changes in microclimate at varying spatial and temporal scales. There are at least five possible sources of local variation: pigment preservation, temporal variations in water availability, temporal and spatial interactions among environmental and biological components, the local-scale patchiness of organism distribution, and biotic interactions. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador: