224 resultados para beta galactosidase
Resumo:
In this work, we demonstrate that the wbbD gene of the O7 lipopolysaccharide (LPS) biosynthesis cluster in Escherichia coli strain VW187 (O7:K1) encodes a galactosyltransferase involved in the synthesis of the O7-polysaccharide repeating unit. The galactosyltransferase catalyzed the transfer of Gal from UDP-Gal to the GlcNAc residue of a GlcNAc-pyrophosphate-lipid acceptor. A mutant strain with a defective wbbD gene was unable to form O7 LPS and lacked this specific galactosyltransferase activity. The normal phenotype was restored by complementing the mutant with the cloned wbbD gene. To characterize the WbbD galactosyltransferase, we used a novel acceptor substrate containing GlcNAcalpha-pyrophosphate covalently bound to a hydrophobic phenoxyundecyl moiety (GlcNAc alpha-O-PO(3)-PO(3)-(CH(2))(11)-O-phenyl). The WbbD galactosyltransferase had optimal activity at pH 7 in the presence of 2.5 mM MnCl(2). Detergents in the assay did not increase glycosyl transfer. Digestion of enzyme product by highly purified bovine testicular beta-galactosidase demonstrated a beta-linkage. Cleavage of product by pyrophosphatase and phosphatase, followed by HPLC and NMR analyses, revealed a disaccharide with the structure Gal beta1-3GlcNAc. Our results conclusively demonstrate that WbbD is a UDP-Gal: GlcNAcalpha-pyrophosphate-R beta1,3-galactosyltransferase and suggest that the novel synthetic glycolipid acceptor may be generally applicable to characterize other bacterial glycosyltransferases.
Resumo:
Rachid S, Ohlsen K, Witte W, Hacker J, Ziebuhr W. Institut für Molekulare Infektionsbiologie, Röntgenring 11, D-97070 Würzburg, Germany. Biofilm production is an important step in the pathogenesis of Staphylococcus epidermidis polymer-associated infections and depends on the expression of the icaADBC operon leading to the synthesis of a polysaccharide intercellular adhesin. A chromosomally encoded reporter gene fusion between the ica promoter and the beta-galactosidase gene lacZ from Escherichia coli was constructed and used to investigate the influence of both environmental factors and subinhibitory concentrations of different antibiotics on ica expression in S. epidermidis. It was shown that S. epidermidis biofilm formation is induced by external stress (i.e., high temperature and osmolarity). Subinhibitory concentrations of tetracycline and the semisynthetic streptogramin antibiotic quinupristin-dalfopristin were found to enhance ica expression 9- to 11-fold, whereas penicillin, oxacillin, chloramphenicol, clindamycin, gentamicin, ofloxacin, vancomycin, and teicoplanin had no effect on ica expression. A weak (i.e., 2.5-fold) induction of ica expression was observed for subinhibitory concentrations of erythromycin. The results were confirmed by Northern blot analyses of ica transcription and quantitative analyses of biofilm formation in a colorimetric assay.
Resumo:
The authors previously reported increased expression of the Salmonella enterica serovar Typhi (S. typhi) rfaH gene when the bacterial cells reach stationary phase. In this study, using a lacZ fusion to the rfaH promoter region, they demonstrate that growth-dependent regulation of rfaH expression occurs at the level of transcription initiation. It was also observed that production of the lipopolysaccharide (LPS) O-antigen by S. typhi Ty2 correlated with the differential expression of rfaH during bacterial growth. This was probably due to the increased cellular levels of RfaH, since expression of the distal gene in the O-antigen gene cluster of S. typhi Ty2, wbaP, was also increased during stationary growth, as demonstrated by RT-PCR analysis. Examination of the sequences upstream of the rfaH coding region revealed homologies to potential binding sites for the RcsB/RcsA dimer of the RcsC/YopJ/RcsB phosphorelay regulatory system and for the RpoN alternative sigma factor. The expression of the rfaH gene in rpoN and rcsB mutants of S. typhi Ty2 was measured. The results indicate that inactivation of rpoN, but not of rcsB, suppresses the growth-phase-dependent induction of rfaH expression. Furthermore, production of beta-galactosidase mediated by the rfaH-lacZ fusion increased approximately fourfold when bacteria were grown in a nitrogen-limited medium. Nitrogen limitation was also shown to increase the expression of the O-antigen by the wild-type S. typhi Ty2, as demonstrated by a similar electrophoretic profile to that observed during the stationary phase of growth in rich media. It is therefore concluded that the relationship between LPS production and nitrogen limitation parallels the pattern of rfaH regulation under the control of RpoN and is consistent with the idea that RpoN modulates LPS formation via its effect on rfaH gene expression during bacterial growth.
Resumo:
The aerobactin gene cluster in pColV-K30 consists of five genes (iucABCD iutA); four of these (iucABCD) are involved in aerobactin biosynthesis, whereas the fifth one (iutA) encodes the ferriaerobactin outer membrane receptor. iucD encodes lysine:N6-hydroxylase, which catalyzes the first step in aerobactin biosynthesis. Regardless of the method used for cell rupture, we have consistently found that IucD remains membrane bound, and repeated efforts to achieve a purified and active soluble form of the enzyme have been unsuccessful. To circumvent this problem, we have constructed recombinant IucD proteins with modified amino termini by creating three in-frame gene fusions of IucD to the amino-terminal amino acids of the cytoplasmic enzyme beta-galactosidase. Two of these constructs resulted in the addition to the iucD coding region of a hydrophilic leader sequence of 13 and 30 amino acids. The other construct involved the deletion of the first 47 amino acids of the IucD amino terminus and the addition of 19 amino acids of the amino terminus of beta-galactosidase. Cells expressing any of the three recombinant IucD forms were found to produce soluble N6-hydroxylysine. One of these proteins, IucD439, was purified to homogeneity from the soluble fraction of the cell lysates, and it was capable of participating in the biosynthesis of aerobactin, as determined in vitro by a cell-free system and in vivo by a cross-feeding bioassay. A medium ionic strength of 0.25 (250 mM NaCl) or higher was required to maintain the protein in a catalytically functional, tetrameric state.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
We recently cloned biosynthesis genes for the O7-lipopolysaccharide (O7-LPS) side chain from the Escherichia coli K-1 strain VW187 (M. A. Valvano, and J. H. Crosa, Infect. Immun. 57:937-943, 1989). To characterize the O7-LPS region, the recombinant cosmids pJHCV31 and pJHCV32 were mutagenized by transposon mutagenesis with Tn3HoHo1, which carries a promoterless lac operon and can therefore generate lacZ transcriptional fusions with target DNA sequences. Cells containing mutated plasmids were examined for their ability to react by coagglutination with O7 antiserum. The LPS pattern profiles of the insertion mutants were also investigated by electrophoresis of cell envelope fractions, followed by silver staining and immunoblotting analysis. These experiments identified three phenotypic classes of mutants and defined a region in the cloned DNA of about 14 kilobase pairs that is essential for O7-LPS expression. Analysis of beta-galactosidase production by cells carrying plasmids with transposon insertions indicated that transcription occurs in only one direction along the O7-LPS region. In vitro transcription-translation experiments revealed that the O7-LPS region encodes at least 16 polypeptides with molecular masses ranging from 20 to 48 kilodaltons. Also, the O7-LPS region in VW187 was mutagenized by homologous recombination with subsets of the cloned O7-LPS genes subcloned into a suicide plasmid vector. O7-LPS-deficient mutants of VW187 were complemented with pJHCV31 and pJHCV32, confirming that these cosmids contain genetic information that is essential for the expression of the O7 polysaccharide.
Resumo:
Histone deacetylases (HDACs) have a central role in the regulation of gene expression. Here we investigated whether HDAC7 has an impact on embryonic stem (ES) cell differentiation into smooth muscle cells (SMCs). ES cells were seeded on collagen-IV-coated flasks and cultured in the absence of leukemia inhibitory factor in differentiation medium to induce SMC differentiation. Western blots and double-immunofluorescence staining demonstrated that HDAC7 has a parallel expression pattern with SMC marker genes. In ex vivo culture of embryonic cells from SM22-LacZ transgenic mice, overexpression of HDAC7 significantly increased beta-galactosidase-positive cell numbers and enzyme activity, indicating its crucial role in SMC differentiation during embryonic development. We found that HDAC7 undergoes alternative splicing during ES cell differentiation. Platelet-derived growth factor enhanced ES cell differentiation into SMCs through upregulation of HDAC7 splicing. Further experiments revealed that HDAC7 splicing induced SMC differentiation through modulation of the SRF-myocardin complex. These findings suggest that HDAC7 splicing is important for SMC differentiation and vessel formation in embryonic development.
Resumo:
The non-beta-amyloid (Aß) component of Alzheimer's disease amyloid (NAC) and its precursor a-synuclein have been linked to amyloidogenesis in several neurodegenerative diseases. NAC and a-synuclein both form ß-sheet structures upon ageing, aggregate to form fibrils, and are neurotoxic. We recently established that a peptide comprising residues 3±18 of NAC retains these properties. To pinpoint the exact region responsible we have carried out assays of toxicity and physicochemical properties on smaller fragments of NAC. Toxicity was measured by the ability of fresh and aged peptides to inhibit the reduction of the redox dye 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) by rat pheochromocytoma PC12 cells and human neuroblastoma SHSY-5Y cells. On immediate dissolution, or after ageing, the fragments NAC(8±18) and NAC(8±16) are toxic, whereas NAC(12±18), NAC(9±16) and NAC(8±15) are not. Circular dichroism indicates that none of the peptides displays ß-sheet structure; rather all remain random coil throughout 24 h. However, in acetonitrile, an organic solvent known to induce ß sheet, fragments NAC(8±18) and NAC(8±16) both form ß-sheet structure. Only NAC(8±18) aggregates, as indicated by concentration of peptide remaining in solution after 3 days, and forms fibrils, as determined by electron microscopy. These findings indicate that residues 8±16 of NAC, equivalent to residues 68±76 in a-synuclein, comprise the region crucial for toxicity.
Resumo:
Synucleins are small proteins that are highly expressed in brain tissue and are localised at presynaptic terminals in neurons. alpha-Synuclein has been identified as a component of intracellular fibrillar protein deposits in several neurodegenerative diseases, and two mutant forms of alpha-synuclein have been associated with autosomal-dominant Parkinson's Disease. A fragment of alpha-synuclein has also been identified as the non-Abeta component of Alzheimer's Disease amyloid. In this review we describe some structural properties of alpha-synuclein and the two mutant forms, as well as alpha-synuclein fragments, with particular emphasis on their ability to form beta-sheet on ageing and aggregate to form amyloid-like fibrils. Differences in the rates of aggregation and morphologies of the fibrils formed by alpha-synuclein and the two mutant proteins are highlighted. Interactions between alpha-synuclein and other proteins, especially those that are components of amyloid or Lewy bodies, are considered. The toxicity of alpha-synuclein and related peptides towards neurons is also discussing in relation to the aetiology of neurodegenerative diseases.