35 resultados para asteroid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The SuperWASP project is an ultra-wide angle search for extra solar planetary transits. However, it can also serendipitously detect solar system objects, such as asteroids and comets. Each SuperWASP instrument consists of up to eight cameras, combined with high-quality peltier-cooled CCDs, which photometrically survey large numbers of stars in the magnitude range 7 15. Each camera covers a 7.8 × 7.8 degree field of view. Located on La Palma, the SuperWASP-I instrument has been observing the Northern Hemisphere with five cameras since its inauguration in April 2004. The ultra-wide angle field of view gives SuperWASP the possibility of discovering new fast moving (near to Earth) asteroids that could have been missed by other instruments. However, it provides an excellent opportunity to produce a magnitude-limited lightcurve survey of known main belt asteroids. As slow moving asteroids stay within a single SuperWASP field for several weeks, and may be seen in many fields, a survey of all objects brighter than magnitude 15 is possible. This will provide a significant increase in the total number of lightcurves available for statistical studies without the inherent bias against longer periods present in the current data sets. We present the methodology used in the automated collection of asteroid data from SuperWASP and some of the first examples of lightcurves from numbered asteroids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Amor-type near-Earth Asteroid (10302) 1989 ML has an “Earth-like” orbit (period 1.44 yr, eccentricity 0.14, inclination 4.4°), therefore the energy required to reach it from the Earth is relatively small making it a very attractive target for rendezvous missions. We have observed 1989 ML in the thermal infrared using the Spitzer Space Telescope, and compared these data with optical and near-infrared observations. The Spitzer results imply a diameter of 0.28±0.05 km and a geometric albedo of 0.37±0.15; together with the reflectance spectrum they are consistent with the relatively rare E classification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the absence of a firm link between individual meteorites and their asteroidal parent bodies, asteroids are typically characterized only by their light reflection properties, and grouped accordingly into classes. On 6 October 2008, a small asteroid was discovered with a flat reflectance spectrum in the 554-995nm wavelength range, and designated 2008 TC3 (refs 4-6). It subsequently hit the Earth. Because it exploded at 37km altitude, no macroscopic fragments were expected to survive. Here we report that a dedicated search along the approach trajectory recovered 47 meteorites, fragments of a single body named Almahata Sitta, with a total mass of 3.95kg. Analysis of one of these meteorites shows it to be an achondrite, a polymict ureilite, anomalous in its class: ultra-fine-grained and porous, with large carbonaceous grains. The combined asteroid and meteorite reflectance spectra identify the asteroid as F class, now firmly linked to dark carbon-rich anomalous ureilites, a material so fragile it was not previously represented in meteorite collections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context. Near-Earth asteroid (25143) Itokawa was visited by the Hayabusa spacecraft in 2005, resulting in a highly detailed shape and surface topography model. This model has led to several predictions for the expected radiative torques on this asteroid, suggesting that its spin rate should be decelerating. Aims. To detect changes in rotation rate that may be due to YORP-induced radiative torques, which in turn may be used to investigate the interior structure of the asteroid. Methods. Through an observational survey spanning 2001 to 2013 we obtained rotational lightcurve data at various times over the last five close Earth-approaches of the asteroid. We applied a polyhedron-shape-modelling technique to assess the spin-state of the asteroid and its long term evolution. We also applied a detailed thermophysical analysis to the shape model determined from the Hayabusa spacecraft. Results. We have successfully measured an acceleration in Itokawa's spin rate of dω/dt = (3.54 ± 0.38) × 10 rad day, equivalent to a decrease of its rotation period of ~45 ms year. From the thermophysical analysis we find that the centre-of-mass for Itokawa must be shifted by ~21 m along the long-axis of the asteroid to reconcile the observed YORP strength with theory. Conclusions. This can be explained if Itokawa is composed of two separate bodies with very different bulk densities of 1750 ± 110 kg m and 2850 ± 500 kg m, and was formed from the merger of two separate bodies, either in the aftermath of a catastrophic disruption of a larger differentiated body, or from the collapse of a binary system. We therefore demonstrate that an observational measurement of radiative torques, when combined with a detailed shape model, can provide insight into the interior structure of an asteroid. Futhermore, this is the first measurement of density inhomogeneity within an asteroidal body, that reveals significant internal structure variation. A specialised spacecraft is normally required for this.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the results of a search for the reactivation of active asteroid 176P/LINEAR during its 2011 perihelion passage using deep optical observations obtained before, during, and after that perihelion passage. Deep composite images of 176P constructed from data obtained between 2011 June and 2011 December show no visible signs of activity, while photometric measurements of the object during this period also show no significant brightness enhancements similar to that observed for 176P between 2005 November and 2005 December when it was previously observed to be active. An azimuthal search for dust emission likewise reveals no evidence for directed emission (i.e., a tail, as was previously observed for 176P), while a one-dimensional surface brightness profile analysis shows no indication of a spherically symmetric coma at any time in 2011. We conclude that 176P did not in fact exhibit activity in 2011, at least not on the level on which it exhibited activity in 2005, and suggest that this could be due to the devolatization or mantling of the active site responsible for its activity in 2005.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Near-Earth asteroid (25143) Itokawa was visited by the Hayabusa spacecraft in 2005, resulting in a highly detailed surface shape and topography model. This model has led to several predictions for the expected radiative torques on this asteroid, suggesting that its spin rate should be decelerating. Through an observational survey spanning 2001 to 2013 we have successfully measured an acceleration in its spin rate of dω/dt = 3.54 (± 0.38) × 10^(-8) rad day^(-2), equivalent to a decrease of its rotation period of ~ 45 ms year^(-1). Using the shape model determined from the Hayabusa spacecraft, we applied a detailed thermophysical analysis, to reconcile the predicted YORP strength with that observed. We find that the center-of-mass for Itokawa must be shifted by ~20 m along the long-axis of the asteroid to reconcile observations with theory. This can be explained if Itokawa is composed of two separate bodies with very different bulk densities of 1740 ± 110 kg m^(-3) and 2730 ± 440 kg m^(-3), and was formed from the merger of two separate bodies, consistent with the collapse of a binary system or the re-accumulation of material from a catastrophic collisional disruption. We demonstrate that an observational measurement of radiative torques, when combined with a detailed shape model, can provide insight into the interior structure of an asteroid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We are conducting an ESO Large Program that includes optical photometry, thermal-IR observations, and optical-NIR spectroscopy of selected NEAs. Among the principal goals of the program are shape and spin-state modeling, and searching for YORP-induced changes in rotation periods. One of our targets is asteroid (1917) Cuyo, a near-Earth asteroid from the Amor group. We carried out an extensive observing campaign on Cuyo between April 2010 and April 2013, operating primarily at the ESO 3.6m NTT for optical photometry, and the 8.2m VLT at Paranal for thermal-IR imaging. Further optical observations were acquired at the ESO 2.2m telescope, the Palomar 200" Hale telescope (California), JPL’s Table Mountain Observatory (California) and the Faulkes Telescope South (Australia). We obtained optical imaging data for rotational lightcurves throughout this period, as the asteroid passed through a wide range of observational geometries, conducive to producing a good shape model and spin state solution. The preliminary shape and spin state model indicates a nearly spherical shape and a rotation pole at ecliptic longitude λ = 53° ± 20° and latitude β = -37° ± 10° (1-sigma error bars are approximate). The sidereal rotation period was measured to be 2.6899522 ± (3 × 10^-7) hours. Linkage with earlier lightcurve data shows possible evidence of a small change in rotation rate during the period 1989-2013. We applied the NEATM thermal model (Harris A., Icarus 131, 291, 1998) to our VLT thermal-IR measurements (8-19.6 μm), obtained in September and December 2011. The derived effective diameter ranges from 3.4 to 4.2 km, and the geometric albedo is 0.16 (+0.07, -0.04). Using the shape model and thermal fluxes we will perform a detailed thermophysical analysis using the new Advanced Thermophysical Model (Rozitis, B. & Green, S.F., MNRAS 415, 2042, 2011; Rozitis, B. & Green, S.F., MNRAS 423, 367, 2012). This work was performed in part at the Jet Propulsion Laboratory under a contract with NASA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have developed a model to predict the post-collision brightness increase of sub-catastrophic collisions between asteroids and to evaluate the likelihood of a survey detecting these events. It is based on the cratering scaling laws of Holsapple and Housen (2007) and models the ejecta expansion following an impact as occurring in discrete shells each with their own velocity. We estimate the magnitude change between a series of target/impactor pairs, as- suming it is given by the increase in reflecting surface area within a photometric aperture due to the resulting ejecta. As expected the photometric signal increases with impactor size, but we find also that the photometric signature decreases rapidly as the target aster- oid diameter increases, due to gravitational fallback. We have used the model results to make an estimate of the impactor diameter for the (596) Scheila collision of D = 49 − 65m depending on the impactor taxonomy, which is broadly consistent with previous estimates. We varied both the strength regime (highly porous and sand/cohesive soil) and the tax- onomic type (S-, C- and D-type) to examine the effect on the magnitude change, finding that it is significant at early stages but has only a small effect on the overall lifetime of the photometric signal. Combining the results of this model with the collision frequency estimates of Bottke et al. (2005), we find that low-cadence surveys of ∼one visit per luna- tion will be insensitive to impacts on asteroids with D < 20km if relying on photometric detections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MarcoPolo-R is a sample return mission to a primitive Near-Earth Asteroid (NEA) proposed in collaboration with NASA. It will rendezvous with a primitive NEA, scientifically characterize it at multiple scales,and return a unique sample to Earth unaltered by the atmospheric entry process or terrestrial weathering. MarcoPolo-R will return bulk samples (up to 2 kg) from an organic-rich binary asteroid to Earth for laboratory analyses, allowing us to: explore the origin of planetary materials and initial stages of habitable planet formation; identify and characterize the organics and volatiles in a primitive asteroid; understand the unique geomorphology, dynamics and evolution of a binaryNEA. This project is based on the previous Marco Polo mission study,which was selected for the Assessment Phase of the first round of Cosmic Vision. Its scientific rationale was highly ranked by ESA committees andit was not selected only because the estimated cost was higher than theallotted amount for an M class mission. The cost of Marco Polo-R will be reduced to within the ESA medium mission budget by collaboration withAPL (John Hopkins University) and JPL in the NASA program for coordination with ESA's Cosmic Vision Call. The baseline target is a binary asteroid (175706) 1996 FG3, which offers a very efficient operational and technical mission profile. A binary target also providesenhanced science return. The choice of this target will allow newinvestigations to be performed more easily than at a single object, andalso enables investigations of the fascinating geology and geophysics ofasteroids that are impossible at a single object. Several launch windows have been identified in the time-span 2020-2024. A number of otherpossible primitive single targets of high scientific interest have beenidentified covering a wide range of possible launch dates. The baselinemission scenario of Marco Polo-R to 1996 FG3 is as follows: a singleprimary spacecraft provided by ESA, carrying the Earth Re-entry Capsule, sample acquisition and transfer system provided by NASA, will be launched by a Soyuz-Fregat rocket from Kourou into GTO and using two space segment stages. Two similar missions with two launch windows, in 2021 and 2022 and for both sample return in 2029 (with mission durationof 7 and 8 years), have been defined. Earlier or later launches, in 2020 or 2024, also offer good opportunities. All manoeuvres are carried out by a chemical propulsion system. MarcoPolo-R takes advantage of three industrial studies completed as part of the previous Marco Polo mission (see ESA/SRE (2009)3, Marco Polo Yellow Book) and of the expertise of the consortium led by Dr. A.F. Cheng (PI of the NASA NEAR Shoemaker mission) of the JHU-APL, including JPL, NASA ARC, NASA LaRC, and MIT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recently discovered unbound asteroid pairs have been suggested to be the result of the decoupling of binary asteroids formed either through collision processes or, more likely, rotational fission of a rubble-pile asteroid after spin-up (Vokrouhlicky et al. 2008, AJ 136, 280; Pravec et al., 2010, Nature, 466, 1085). Much of the evidence for linkage of the asteroids in each pair relies solely on the backwards integrations of their orbits. We report new results from our continuing spectroscopic survey of the unbound asteroid pairs, including the youngest known pair, (6070) Rhineland - (54827) 2001 NQ8. The survey goal is to determine whether the asteroids in each unbound pair have similar spectra and therefore composition, expected if they have formed from a common parent body. Low-resolution spectroscopy covering the range 0.4-0.95 microns was conducted using the 3.6m ESO NTT+EFOSC2 during 2011-2012 and the 4.2m WHT+ACAM. We have attempted to maintain a high level of consistency between the observations of the components in each pair to ensure that differences in the asteroid spectra are not the result of the observing method or data reduction, but purely caused by compositional differences. Our WHT data indicates that the asteroids of unbound pair 17198 - 229056 exhibit different spectra and have been assigned different taxonomies, A and R respectively. Initial analysis of our data from the NTT suggests that the asteroids in unbound pairs 6070 - 54827 and 38707 - 32957 are likely silicate-dominated asteroids. The components of pair 23998 - 205383 are potentially X-type asteroids. We present final taxonomic classifications and the likelihood of spectral similarity in each pair.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The discovery of P/2010 A2 by the LINEAR survey in January 2010 revealed an object displaying a large trail of material similar in shape to a cometary tail although no central condensation or coma could be detected. The appearance of this object in an asteroidal orbit in the inner main belt attracted attention as a potential new member of the Main Belt Comets class (MBCs) but the discovery of a nucleus, with an estimated diameter of 120 m, around 1500 km away from the trail implied that the extended object we were seeing could be the debris trail from a recent collision rather than the tail of a comet. Due to the low inclination of its orbit, it is difficult to conclude about the nature of P/2010 A2 from Earth-based data only, as different scenarios lead to the same appearance in the orbital configuration at the times of observations. We present here another set of images, acquired from the unique viewing geometry provided by ESA's Rosetta spacecraft en route to comet 67P/Churyumov-Gerasimenko. Albeit faint (22 magnitude), the object could be observed by the high-resolution camera OSIRIS. We used a Finson-Probstein model to simulate the shape of the trail, and estimate the time of emission and β parameter (ratio between solar radiation pressure and gravity) for the dust grains. Simulations were compared to the OSIRIS images and ground based observations acquired at NTT and Palomar telescopes. Thanks to the different phase angle provided by Rosetta, we could reduce the number of solutions to a unique model, leading to the conclusive demonstration that the trail is due to a single event rather than a period of cometary activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article explores what the recovery of 2008 TC3 in the form of the Almahata Sitta meteorites may tell us about the source region of ureilites in the main asteroid belt. An investigation is made into what is known about asteroids with roughly the same spectroscopic signature as 2008 TC3. A population of low-inclination near-Earth asteroids is identified with spectra similar to 2008 TC3. Five asteroid families in the Main Belt, as well as a population of ungrouped asteroids scattered in the inner and central belts, are identified as possible source regions for this near-Earth population and 2008 TC3. Three of the families are ruled out on dynamical and spectroscopic grounds. New near-infrared spectra of 142 Polana and 1726 Hoffmeister, lead objects in the two other families, also show a poor match to Almahata Sitta. Thus, there are no Main Belt spectral analogs to Almahata Sitta currently known. Space weathering effects on ureilitic materials have not been investigated, so that it is unclear how the spectrum of the Main Belt progenitor may look different from the spectra of 2008 TC3 and the Almahata Sitta meteorites. Dynamical arguments are discussed, as well as ureilite petrogenesis and parent body evolution models, but these considerations do not conclusively point to a source region either, other than that 2008 TC3 probably originated in the inner asteroid belt.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The peculiar object P/2010A2 was discovered in January 2010 and given a cometary designation because of the presence of a trail of material, although there was no central condensation or coma. The appearance of this object, in an asteroidal orbit (small eccentricity and inclination) in the inner main asteroid belt attracted attention as a potential new member of the recently recognized class of main-belt comets. If confirmed, this new object would expand the range in heliocentric distance over which main-belt comets are found. Here we report observations of P/2010A2 by the Rosetta spacecraft. We conclude that the trail arose from a single event, rather than a period of cometary activity, in agreement with independent results. The trail is made up of relatively large particles of millimetre to centimetre size that remain close to the parent asteroid. The shape of the trail can be explained by an initial impact ejecting large clumps of debris that disintegrated and dispersed almost immediately. We determine that this was an asteroid collision that occurred around 10 February 2009.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context: Near-Earth asteroid-comet transition object 107P/ (4015) Wilson-Harrington is a possible target of the joint European Space Agency (ESA) and Japanese Aerospace Exploration Agency (JAXA) Marco Polo sample return mission. Physical studies of this object are relevant to this mission, and also to understanding its asteroidal or cometary nature. Aims: Our aim is to obtain significant new constraints on the surface thermal properties of this object. Methods: We present mid-infrared photometry in two filters (16 and 22 μm) obtained with NASA's Spitzer Space Telescope on February 12, 2007, and results from the application of the Near Earth Asteroid Thermal Model (NEATM). We obtained high S/N in two mid-IR bands allowing accurate measurements of its thermal emission. Results: We obtain a well constrained beaming parameter (η = 1.39±0.26) and obtain a diameter and geometric albedo of D = 3.46±0.32 km, and pV = 0.059±0.011. We also obtain similar results when we apply this best-fitting thermal model to single-band mid-IR photometry reported by Campins et al. (1995, P&SS, 43, 733), Kraemer et al. (2005, AJ, 130, 2363) and Reach et al. (2007, Icarus, 191, 298). Conclusions: The albedo of 4015 Wilson-Harrington is low, consistent with those of comet nuclei and primitive C-, P-, D-type asteorids. We establish a rough lower limit for the thermal inertia of W-H of 60 Jm-2s-0.5 K-1 when it is at r = 1 AU, which is slightly over the limit of 30 Jm-2 s-0.5 K-1 derived by Groussin et al. (2009, Icarus, 199, 568) for the thermal inertia of the nucleus of comet 22P/Kopff.