21 resultados para acidic phospholipase A(2)
Resumo:
Recent studies implicate the collagen receptor, glycoprotein VI (GPVI) in activation of platelet 12-lipoxygenase (p12-LOX). Herein, we show that GPVI-stimulated 12-hydro(peroxy)eicosatetraenoic acid (H(P)ETE) synthesis is inhibited by palmityl trifluromethyl ketone or oleyloxyethyl phosphocholine, but not bromoenol lactone, implicating secretory and cytosolic, but not calcium-independent phospholipase A(2) (PLA(2)) isoforms. Also, following GPVI activation, 12-LOX co-immunoprecipitates with both cytosolic and secretory PLA(2), (sPLA(2)). Finally, venoms containing sPLA(2) acutely activate p12-LOX in a dose-dependent manner. This study shows that platelet 12-H(P)ETE generation utilizes arachidonate substrate from both c- and sPLA(2) and that 12-LOX functionally associates with both PLA(2) isoforms. (C) 2004 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Resumo:
Objective: Lipoprotein-associated phospholipase A(2) (Lp-PLA(2)) is an inflammatory biomarker that circulates mainly bound to LDL. We evaluated the association of Lp-PLA(2) with vascular events in the elderly where the importance of LDL is diminished as a risk factor for coronary disease.
Resumo:
TRPM8 represents an ion channel activated by cold temperatures and cooling agents, such as menthol, that underlies the cold-induced excitation of sensory neurons. Interestingly, the only human tissue outside the peripheral nervous system, in which the expression of TRPM8 transcripts has been detected at high levels, is the prostate, a tissue not exposed to any essential temperature variations. Here we show that the TRPM8 cloned from human prostate and heterologously expressed in HEK-293 cells is regulated by the Ca(2+)-independent phospholipase A(2) (iPLA(2)) signaling pathway with its end products, lysophospholipids (LPLs), acting as its endogenous ligands. LPLs induce prominent prolongation of TRPM8 channel openings that are hardly detectable with other stimuli (e.g. cold, menthol, and depolarization) and that account for more than 90% of the total channel open time. Down-regulation of iPLA(2) resulted in a strong inhibition of TRPM8-mediated functional responses and abolished channel activation. The action of LPLs on TRPM8 channels involved either changes in the local lipid bilayer tension or interaction with the critical determinant(s) in the transmembrane channel core. Based on this, we propose a novel concept of TRPM8 regulation with the involvement of iPLA(2) stimulation. This mechanism employs chemical rather than physical (temperature change) signaling and thus may be the main regulator of TRPM8 activation in organs not exposed to any essential temperature variations, as in the prostate gland.
Resumo:
The transient receptor potential melastatin 8 (TRPM8) channel has been characterized as a cold and menthol receptor expressed in a subpopulation of sensory neurons but was recently identified in other tissues, including the respiratory tract, urinary system, and vasculature. Thus TRPM8 may play multiple functional roles, likely to be in a tissue- and activation state-dependent manner. We examined the TRPM8 channel presence in large arteries from rats and the functional consequences of their activation. We also aimed to examine whether these channels contribute to control of conscious human skin blood flow. TRPM8 mRNA and protein were detected in rat tail, femoral and mesenteric arteries, and thoracic aorta. This was confirmed in single isolated vascular myocytes by immunocytochemistry. Isometric contraction studies on endothelium-denuded relaxed rat vessels found small contractions on application of the TRPM8-specific agonist menthol (300 microM). However, both menthol and another agonist icilin (50 microM) caused relaxation of vessels precontracted with KCl (60 mM) or the alpha-adrenoceptor agonist phenylephrine (2 microM) and a reduction in sympathetic nerve-mediated contraction. These effects were antagonized by bromoenol lactone treatment, suggesting the involvement of Ca(2+)-independent phospholipase A(2) activation in TRPM8-mediated vasodilatation. In thoracic aorta with intact endothelium, menthol-induced inhibition of KCl-induced contraction was enhanced. This was unaltered by preincubation with either N(omega)-nitro-l-arginine methyl ester (l-NAME; 100 nM), a nitric oxide synthase inhibitor, or the ACh receptor antagonist atropine (1 microM). Application of menthol (3% solution, topical application) to skin caused increased blood flow in conscious humans, as measured by laser Doppler fluximetry. Vasodilatation was markedly reduced or abolished by prior application of l-NAME (passive application, 10 mM) or atropine (iontophoretic application, 100 nM, 30 s at 70 microA). We conclude that TRPM8 channels are present in rat artery vascular smooth muscle and on activation cause vasoconstriction or vasodilatation, dependent on previous vasomotor tone. TRPM8 channels may also contribute to human cutaneous vasculature control, likely with the involvement of additional neuronal mechanisms.
Resumo:
Venom has only been recently discovered to be a basal trait of the Anguimorpha lizards. Consequently, very little is known about the timings of toxin recruitment events, venom protein molecular evolution, or even the relative physical diversifications of the venom system itself. A multidisciplinary approach was used to examine the evolution across the full taxonomical range of this similar to 130 million-year-old clade. Analysis of cDNA libraries revealed complex venom transcriptomes. Most notably, three new cardioactive peptide toxin types were discovered (celestoxin, cholecystokinin, and YY peptides). The latter two represent additional examples of convergent use of genes in toxic arsenals, both having previously been documented as components of frog skin defensive chemical secretions. Two other novel venom gland-overexpressed modified versions of other protein frameworks were also recovered from the libraries (epididymal secretory protein and ribonuclease). Lectin, hyaluronidase, and veficolin toxin types were sequenced for the first time from lizard venoms and shown to be homologous to the snake venom forms. In contrast, phylogenetic analyses demonstrated that the lizard natriuretic peptide toxins were recruited independently of the form in snake venoms. The de novo evolution of helokinestatin peptide toxin encoding do-mains within the lizard venom natriuretic gene was revealed to be exclusive to the helodermatid/anguid subclade. New isoforms were sequenced for cysteine-rich secretory protein, kallikrein, and phospholipase A 2 toxins. Venom gland morphological analysis revealed extensive evolutionary tinkering. Anguid glands are characterized by thin capsules and mixed glands, serous at the bottom of the lobule and mucous toward the apex. Twice, independently this arrangement was segregated into specialized serous protein-secreting glands with thick capsules with the mucous lobules now distinct (Heloderma and the Lanthanotus/Varanus clade). The results obtained highlight the importance of utilizing evolution-based search strategies for biodiscovery and emphasize the largely untapped drug design and development potential of lizard venoms. Molecular & Cellular Proteomics 9:2369-2390, 2010.
Resumo:
Selected Bronsted acidic ionic liquids were tested as homogeneous catalysts for the dehydration of methanol to dimethyl ether. Ionic liquids incorporating an alkanesulfonic acid as a part of the cation, a complex acidic anion, [A(2)H](-), or both, proved to be good catalysts for this process, providing high conversions and selectivities. Homogeneous catalysis in the liquid state represents a novel approach to dimethyl ether synthesis.
Resumo:
Recombinant wild-type beta(1) gamma(1) dimers of signal-transducing guanine nucleotide-binding proteins (G proteins) and beta(1) gamma 1 dimers carrying a mutation known to block gamma-subunit isoprenylation (beta(1) gamma(1)C71S) were expressed in baculovirus-infected insect cells. Both wild-type and mutant beta(1) gamma(1) dimers were found in soluble fractions of infected cells upon subcellular fractionation. Anion exchange chromatographic and metabolic-radiolabeling studies revealed that the soluble beta(1) gamma(1) preparation contained approximately equal amounts of non-isoprenylated and isoprenylated beta(1) gamma(1) dimers. Soluble wild-type and mutant beta(1) gamma(1) dimers and native beta(1) gamma(1) dimers purified from bovine retina were reconstituted with recombinant phospholipase C-beta(2). Only isoprenylated beta(1) gamma(1) dimers were capable of stimulating phospholipase C-beta(2). The results show that gamma-subunit isoprenylation and/or additional post-translational processing of the protein are required for beta gamma subunit stimulation of phospholipase C.
Resumo:
Seven-transmembrane receptors (7TMRs), also termed G protein-coupled receptors (GPCRs), form the largest class of cell surface membrane receptors, involving several hundred members in the human genome. Near 30% of marketed pharmacological agents target 7TMRs. 7TMRs adopt multiple conformations upon agonist binding. Biased agonists, in contrast to non-biased agonists, are believed to stabilize conformations preferentially activating either G-protein- or ß-arrestin-dependent signalling pathways. However, proof that cognate conformations of receptors display structural differences within their binding site where biased agonism initiates, are still lacking. Here, we show that a non-biased agonist, cholecystokinin (CCK) induces conformational states of the CCK2R activating Gq-protein-dependent pathway (CCK2RG) or recruiting ß-arrestin2 (CCK2Rß) that are pharmacologically and structurally distinct. Two structurally unrelated antagonists competitively inhibited both pathways. A third ligand (GV150,013X), acted as a high affinity competitive antagonist on CCK2RG but was nearly inefficient as inhibitor of CCK2Rß. Several structural elements on both GV150,013X and in CCK2R binding cavity, which hinder binding of GV150,013X only to the CCK2Rß were identified. At last, proximity between two conserved amino acids from transmembrane helices 3 and 7 interacting through sulphur-aromatic interaction was shown to be crucial for selective stabilization of the CCK2Rß state. These data establish structural evidences for distinct conformations of a 7TMR associated with ß-arrestin-2 recruitment or G-protein coupling and validate relevance of the design of biased ligands able to selectively target each functional conformation of 7TMRs.
Resumo:
Background: The treatment of solid tumours and angiogenic ocular diseases by photodynamic therapy (PDT) requires the injection of a photosensitiser (PS) to destroy target cells through a combination of visible light irradiation and molecular oxygen. There is currently great interest in the development of efficient and specific carrier delivery platforms for systemic PDT. Objective: This article aims to review recent developments in systemic carrier delivery platforms for PDT, with an emphasis on target specificity. Methods: Recent publications, spanning the last five years, concerning delivery carrier platforms for systemic PDT were reviewed, including PS conjugates, dendrimers, micelles, liposomes and nanoparticles. Results/conclusion: PS conjugates and supramolecular delivery platforms can improve PDT selectivity by exploiting cellular and physiological specificities of the targeted tissue. Overexpression of receptors in cancer and angiogenic endothelial cells allows their targeting by affinity-based moieties for the selective uptake of PS conjugates and encapsulating delivery carriers, while the abnormal tumour neovascularisation induces a specific accumulation of heavy weighted PS carriers by enhanced permeability and retention (EPR) effect. in addition, polymeric prodrug delivery platforms triggered by the acidic nature of the tumour environment or the expression of proteases can be designed. Promising results obtained with recent systemic carrier platforms will, in due course, be translated into the clinic for highly efficient and selective PDT protocols.
Resumo:
We have compared the roles of adenosine diphosphate (ADP), thromboxanes and the integrin alpha(2)beta(1) in the activation of washed platelets by collagen in the presence of the alpha(IIb)beta3 antagonist lotrafiban. The stimulation of protein tyrosine phosphorylation by a collagen suspension is markedly delayed in the presence of the above inhibitors but shows substantial recovery with time. In comparison, activation of phospholipase C (PLC), Ca2+ elevation and dense granule secretion are more severely suppressed by the above inhibitors. blockade has a slightly greater inhibitory effect on all of the above responses than a combination of ADP receptor antagonists and cyclooxygenase inhibitor. Platelets exposed to a collagen monolayer show robust elevation of Ca2+ that is delayed in the presence of the above inhibitors and which is accompanied by of-granule secretion. These results demonstrate that secondary mediators and alpha(2)beta(1) modulate collagen-induced intracellular signaling but have negligible effect on GPVI signaling induced by the specific agonist convulxin. This work supports the postulate that the major role of of alpha(2)beta(1) is to increase the avidity of collagen for the platelet surface and by doing so enhance activation of GPVI. Therefore we propose an important role of secondary mediators in collagen-induced signaling is the indirect regulation of GPVI signaling via activation of alpha(2)beta(1).
Resumo:
In plasma membranes derived from bovine mesenteric lymphatic smooth muscle cells, guanine nucleotide and forskolin stimulated adenylyl cyclase (AC) activity in a concentration-dependent manner, indicative of the presence of the stimulatory G-protein G(s) linked to AC. There was no significant enzyme inhibition by low concentrations of guanine nucleotide and no effect on basal or guanine nucleotide-stimulated activity following pertussis toxin treatment of cells, suggesting the absence of G(1) linked to inhibition of AC. Furthermore, there was no effect of adrenaline, isoprenaline or clonidine on basal or forskolin-stimulated activities, nor was there any specific binding of the beta-adrenoceptor ligand [I-125]cyanopindolol to membranes, suggesting that cate-cholamine receptors do not modulate AC activity in these membranes. Pertussis toxin-mediated ADP ribosylation of membrane proteins and Western immunoblotting analysis revealed the presence of G-protein subunits G(alpha l2), G(alpha q), G(alpha 11) and G(beta 1). In experiments designed to identify a possible effector enzyme for these G-proteins, membranes were screened with a range of antibodies raised against phospholipase C (PLC) beta, gamma and delta isozymes. Though no evidence was obtained by Western blotting for any of these proteins, PLC activity was concentration-dependently stimulated by Ca2+, but not by AlF4-, GTP[S], or purified G(beta gamma) subunits. Finally, no specific binding to membranes of the alpha(1)-adrenoceptor ligand [H-3]prazosin or the alpha(2)-adrenoceptor ligand [H-3]yohimbine was obtained. In conclusion, this study provides evidence for a G(s)-dependent stimulation of AC, and for the presence of G(2) and G(q11), which do not appear to regulate a PLC activity also identified in lymphatic smooth muscle cell membranes. Furthermore, neither AC nor PLC appear to be associated with catecholamine receptors. Copyright(C) 1996 Elsevier Science Inc.
Resumo:
We have previously shown that isoprenylation and/or additional pest-translational processing of the G protein gamma(1) subunit carboxyl terminus is required for beta(1) gamma(1) subunit stimulation of phospholipase C-beta(2) (PLC beta(2)) [Dietrich, A., Meister, M., Brazil, D., Camps, M., & Gierschik, P. (1994) Eur. J. Biochem. 219, 171-178]. To examine whether isoprenylation of the gamma(1) subunit alone is sufficient for beta(1) gamma(1)-mediated PLC beta(2) stimulation or whether any of the two subsequent modifications, proteolytic removal of the carboxyl-terminal tripeptide and/or carboxylmethylation, is required for this effect, nonisoprenylated recombinant beta(1) gamma(1) dimers were produced in baculovirus-infected insect cells, purified to near homogeneity, and then isoprenylated in vitro using purified recombinant protein farnesyltransferase. Analysis of the beta(1) gamma(1) dimer after in vitro farnesylation by reversed phase high-performance liquid chromatography followed by delayed extraction matrix-assisted laser desorption/ionization mass spectrometry confirmed that the gamma(1) subunit was carboxyl-terminally farnesylated but not proteolyzed and carboxylmethylated. Functional reconstitution of in vitro-farnesylated beta(1) gamma(1) dimers with a recombinant PLC beta(2) isozyme revealed that farnesylation rendered recombinant nonisoprenylated beta(1) gamma(1) dimers capable of stimulating PLC beta(2) and that the degree of this stimulation was only approximately 45% lower for in vitro-farnesylated beta(1) gamma(1) dimers than for fully modified native beta(1) gamma(1) purified from bovine retinal rod outer segments. Taken together, these results suggest that isoprenylation of the gamma subunit is both necessary and sufficient for beta gamma dimer-mediated stimulation of phospholipase C.
Resumo:
We have previously demonstrated that isolates of the Burkholderia cepacia complex can survive intracellularly in murine macrophages and in free-living Acanthamoeba. In this work, we show that the clinical isolates B. vietnamiensis strain CEP040 and B. cenocepacia H111 survived but did not replicate within vacuoles of A. polyphaga. B. cepacia-containing vacuoles accumulated the fluid phase marker Lysosensor Blue and displayed strong blue fluorescence, indicating that they had low pH. In contrast, the majority of intracellular bacteria within amoebae treated with the V-ATPse inhibitor bafilomycin A1 localized in vacuoles that did not fluoresce with Lysosensor Blue. Experiments using bacteria fluorescently labelled with chloromethylfluorescein diacetate demonstrated that intracellular bacteria remained viable for at least 24 h. In contrast, Escherichia coli did not survive within amoebae after 2 h post infection. Furthermore, intracellular B. vietnamiensis CEP040 retained green fluorescent protein within the bacterial cytoplasm, while this protein rapidly escaped from the cytosol of phagocytized heat-killed bacteria into the vacuolar lumen. Transmission electron microscopy analysis confirmed that intracellular Burkholderia cells were structurally intact. In addition, both Legionella pneumophila- and B. vietnamiensis-containing vacuoles did not accumulate cationized ferritin, a compound that localizes within the lysosome. Thus, our observations support the notion that B. cepacia complex isolates can use amoebae as a reservoir in the environment by surviving without intracellular replication within an acidic vacuole that is distinct from the lysosomal compartment.
Resumo:
The acidic properties of nanolayered ZSM-5 zeolites synthesized with the aid of multiquaternary ammonium surfactants were investigated in detail. A substantial fraction of Al is present in highly dispersed form at extraframework positions indicative of the defective nature of the calcined nanolayered zeolites. Acidity characterization reveals that the Brønsted acid sites are similar in strength to those in bulk HZSM-5. Nanolayered zeolites contain a higher amount of Brønsted acid sites (BAS) at their external (mesopore) surface. Unilamellar zeolites have a higher concentration of external BA and silanol sites than multilamellar ones. The number of BAS in the nanolayered zeolites is considerably lower than the tetrahedral Al content, the difference increasing with nanolayer thickness. Except for one particular sample (nanolayered ZSM-5 synthesized from COH template), the total turnover of methanol normalized per BAS trends inversely with the concentration of BAS. There is no correlation with the concentration of external BAS. Catalyst deactivation due to coke mainly depends on the BAS concentration. A unilamellar ZSM-5 zeolite prepared using COH displayed substantially improved performance in terms of a much lower rate of coke deactivation in line with earlier data Choi et al. [10]. Since the acidic and textural properties of this zeolite did not differ significantly from the others, it remains to be determined why this zeolite performs so much better. © 2013 Elsevier Ltd. All rights reserved.