107 resultados para Wave energy converter


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of water depth on the performance of a small surging wave energy converter (WEC) is investigated analytically, numerically and experimentally. It is shown that although the average annual incident wave power is significantly reduced by water depth, a large proportion of this reduction is due to the dissipation of highly energetic, but largely unexploitable seas. It is also shown that the power capture is related more closely to incident wave force than incident wave power. Experimental results demonstrate that both the surge wave force and power capture of a flap-type WEC increase in shallow water.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A linear hydrodynamic model is used to assess the sensitivity of the performance of a wave energy converter (WEC) array to control parameters. It is found that WEC arrays have a much smaller tolerance to imprecision of the control parameters than isolated WECs and that the increase in power capture of WEC arrays is only achieved with larger amplitudes of motion of the individual WECs. The WEC array radiation pattern is found to provide useful insight into the array hydrodynamics. The linear hydrodynamic model is used, together with the wave climate at the European Marine Energy Centre (EMEC), to assess the maximum annual average power capture of a WEC array. It is found that the maximum annual average power capture is significantly reduced compared to the maximum power capture for regular waves and that the optimum array configuration is also significantly modified. It is concluded that the optimum configuration of a WEC array will be as much influenced by factors such as mooring layout, device access and power smoothing as it is by the theoretical optimum hydrodynamic configuration. © 2009 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The power output from a wave energy converter is typically predicted using experimental and/or numerical modelling techniques. In order to yield meaningful results the relevant characteristics of the device, together with those of the wave climate must be modelled with sufficient accuracy.

The wave climate is commonly described using a scatter table of sea states defined according to parameters related to wave height and period. These sea states are traditionally modelled with the spectral distribution of energy defined according to some empirical formulation. Since the response of most wave energy converters vary at different frequencies of excitation, their performance in a particular sea state may be expected to depend on the choice of spectral shape employed rather than simply the spectral parameters. Estimates of energy production may therefore be affected if the spectral distribution of wave energy at the deployment site is not well modelled. Furthermore, validation of the model may be affected by differences between the observed full scale spectral energy distribution and the spectrum used to model it.

This paper investigates the sensitivity of the performance of a bottom hinged flap type wave energy converter to the spectral energy distribution of the incident waves. This is investigated experimentally using a 1:20 scale model of Aquamarine Power’s Oyster wave energy converter, a bottom hinged flap type device situated at the European Marine Energy Centre (EMEC) in approximately 13m water depth. The performance of the model is tested in sea states defined according to the same wave height and period parameters but adhering to different spectral energy distributions.

The results of these tests show that power capture is reduced with increasing spectral bandwidth. This result is explored with consideration of the spectral response of the device in irregular wave conditions. The implications of this result are discussed in the context of validation of the model against particular prototype data sets and estimation of annual energy production.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This short paper, structured in 3 distinct sections will touch on some of the key features of the Oyster wave energy device and its recent development. The first section discusses the nature of the resource in the nearshore environment,
some common misunderstandings in relation to it and its suitability for exploitation of commercial wave energy. In the second section a brief description of some of the fundamentals governing flap type devices is given. This serves to emphasise core differences between the Oyster device and other devices. Despite the simplicity of the design and the operation of the device itself, it is shown that Oyster occupies a theoretical space which is substantially outside most established theories and axioms in wave energy. The third section will give a short summary of the recent developments in the design of the Oyster 2 project and touch on how its enhanced features deal with some of the key commercial and technical challenges present in the sector.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wave energy converters, by their nature, extract large amounts of energy
from incident waves. If the industry is to progress such that wave energy
becomes a significant provider of power in the future, large wave farms will
be required. Presently, consenting for these sites is a long and problematic
process, mainly due to a lack of knowledge of the potential environmental
impacts. Accurate numerical modelling of the effect of wave energy extraction
on the wave field and subsequent evaluation of changes to coastal
processes is therefore required. Modelling the wave field impact is also
necessary to allow optimum wave farm configurations to be determined.
This thesis addresses the need for more accurate representation of wave
energy converters in numerical models so that the effect on the wave field,
and subsequently the coastal processes, may be evaluated. Using a hybrid
of physical and numerical modelling (MIKE21 BW and SW models) the
effect of energy extraction and operation of a WEC array on the local wave
climate has been determined.
The main outcomes of the thesis are: an improved wave basin facility, in
terms of wave climate homogeneity, reducing the standard deviation of wave
amplitude by up to 50%; experimental measurement of the wave field around
WEC arrays, showing that radiated waves account for a significant proportion
of the wave disturbance; a new representation method of WECs for use
with standard numerical modelling tools, validated against experimental
results.
The methodology and procedures developed here allow subsequent evaluation
of changes to coastal processes and sediment transport due to WEC
arrays.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large-scale commercial exploitation of wave energy is certain to require the deployment of wave energy converters (WECs) in arrays, creating ‘WEC farms’. An understanding of the hydrodynamic interactions in such arrays is essential for determining optimum layouts of WECs, as well as calculating the area of ocean that the farms will require. It is equally important to consider the potential impact of wave farms on the local and distal wave climates and coastal processes; a poor understanding of the resulting environmental impact may hamper progress, as it would make planning consents more difficult to obtain. It is therefore clear that an understanding the interactions between WECs within a farm is vital for the continued development of the wave energy industry.To support WEC farm design, a range of different numerical models have been developed, with both wave phase-resolving and wave phase-averaging models now available. Phase-resolving methods are primarily based on potential flow models and include semi-analytical techniques, boundary element methods and methods involving the mild-slope equations. Phase-averaging methods are all based around spectral wave models, with supra-grid and sub-grid wave farm models available as alternative implementations.The aims, underlying principles, strengths, weaknesses and obtained results of the main numerical methods currently used for modelling wave energy converter arrays are described in this paper, using a common framework. This allows a qualitative comparative analysis of the different methods to be performed at the end of the paper. This includes consideration of the conditions under which the models may be applied, the output of the models and the relationship between array size and computational effort. Guidance for developers is also presented on the most suitable numerical method to use for given aspects of WEC farm design. For instance, certain models are more suitable for studying near-field effects, whilst others are preferable for investigating far-field effects of the WEC farms. Furthermore, the analysis presented in this paper identifies areas in which the numerical modelling of WEC arrays is relatively weak and thus highlights those in which future developments are required.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel method for controlling wave energy converters using active bipolar damping is described and compared with current control methods. The performance of active bipolar damping is modelled numerically for two distinct types of wave energy converter and it is found that in both cases the power capture can be significantly increased relative to optimal linear damping. It is shown that this is because active bipolar damping has the potential for providing a quasi-spring or quasi-inertia, which improves the wave energy converter's tuning and amplitude of motion, resulting in the increase in power capture observed. The practical implementation of active bipolar damping is also discussed. It is noted that active bipolar damping does not require a reactive energy store and thereby reduces the cost and eliminates losses due to the cycling of reactive energy. It is also noted that active bipolar damping could be implemented using a single constant pressure double-acting hydraulic cylinder and so potentially represents a simple, efficient, robust and economic solution to the control of wave energy converters.