59 resultados para Times and movements
Resumo:
Previous studies have attempted to identify sources of contextual information which can facilitate dual adaptation to two variants of a novel environment, which are normally prone to interference. The type of contextual information previously used can be grouped into two broad categories: that which is arbitrary to the motor system, such as a colour cue, and that which is based on an internal property of the motor system, such as a change in movement effector. The experiments reported here examined whether associating visuomotor rotations to visual targets and movements of different amplitude would serve as an appropriate source of contextual information to enable dual adaptation. The results indicated that visual target and movement amplitude is not a suitable source of contextual information to enable dual adaptation in our task. Interference was observed in groups who were exposed to opposing visuomotor rotations, or a visuomotor rotation and no rotation, both when the onset of the visuomotor rotations was sudden, or occurred gradually over the course of training. Furthermore, the pattern of interference indicated that the inability to dual adapt was a result of the generalisation of learning between the two visuomotor mappings associated with each of the visual target and movement amplitudes. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We present theoretical delay times and rates of thermonuclear explosions that are thought to produce Type Ia supernovae (SNe Ia), including the double-detonation sub-Chandrasekhar mass model, using the population synthesis binary evolution code startrack. If detonations of sub-Chandrasekhar mass carbon-oxygen white dwarfs following a detonation in an accumulated layer of helium on the white dwarf's surface ('double-detonation' models) are able to produce thermonuclear explosions which are characteristically similar to those of SNe Ia, then these sub-Chandrasekhar mass explosions may account for at least some substantial fraction of the observed SN Ia rate. Regardless of whether all double-detonations look like 'normal' SNe Ia, in any case the explosions are expected to be bright and thus potentially detectable. Additionally, we find that the delay time distribution of double-detonation sub-Chandrasekhar mass SNe Ia can be divided into two distinct formation channels: the 'prompt' helium-star channel with delay times
Resumo:
The aim of this study was to determine the extent to which adults with Down syndrome (DS) are able to utilise advance information to prepare reach to grasp movements. The study comprised ten adults with DS; ten children matched to an individual in the group with DS on the basis of their intellectual ability, and twelve adult controls. The participants used their right hand to reach out and grasp illuminated perspex blocks. Four target blocks were positioned on a table surface, two to each side of the midsagittal plane. In the complete precue condition, participants were provided with information specifying the location of the target. In the partial precue condition, participants were given advance information indicating the location of the object relative to the midsagittal plane (left or right). In the null condition, advance information concerning the position of the target object was entirely ambiguous. It was found that both reaction times and movement times were greater for the participants with DS than for the adults without DS. The reaction times exhibited by individuals with DS in the complete precue condition were lower than those observed in the null condition, indicating that they had utilised advance information to prepare their movements. In the group with DS, when advance information specified only the location of the target object relative to the midline, reaction times were equivalent to those obtained when ambiguous information was given. In contrast, the adults without DS exhibited reaction times that were lower in both the complete and partial precue conditions when compared to the null condition. The pattern of results exhibited by the children was similar to that of the adults without DS. The movement times exhibited by all groups were not influenced by the precue condition. In summary, our findings indicate that individuals with DS are able to use advance information if it specifies precisely the location of the target object in order to prepare a reach to grasp movement. The group with DS were unable, however, to obtain the normal advantage of advance information specifying only one dimension of the movement goal (i.e., the position of an object relative to the body midline). (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The distribution coefficient, K-d, is often used to quantify heavy metal mobility in soils. Batch sorption or column infiltration tests may be used to measure K-d. The latter are closer to natural soil conditions, but are difficult to conduct in clays. This difficulty can be overcome by using a laboratory centrifuge. An acceleration of 2600 gravities was applied to columns of London Clay, an Eocene clay sub-stratum, and Cu, Ni, and Zn mobility was measured in centrifuge infiltration tests, both as single elements and in dual competition. Single-element K-d values were also obtained from batch sorption tests, and the results from the two techniques were compared. It was found that K-d values obtained by batch tests vary considerably depending on the metal concentration, while infiltration tests provided a single K-d value for each metal. This was typically in the lower end of the range of the batch test K-d values. For both tests, the order of mobility was Ni > Zn > Cu. Metals became more mobile in competition than when in single-element systems: Ni K-d decreased 3.3 times and Zn K-d 3.4 times when they competed with Cu, while Cu decreased only 1.2 times when in competition with either Ni or Zn. Our study showed that competitive sorption between metals increases the mobility of those metals less strongly bound more than it increases the mobility of more strongly bound metals.
Resumo:
In his presidential address to the Belfast meeting of the British Association for the Advancement of Science in 1874, John Tyndall launched what David Livingstone has called a ‘frontal assault on teleology and Christian theism’. Using Tyndall's intervention as a starting point, this paper seeks to understand the attitudes of Presbyterians in the north of Ireland to science in the first three-quarters of the nineteenth century. The first section outlines some background, including the attitude of Presbyterians to science in the eighteenth century, the development of educational facilities in Ireland for the training of Presbyterian ministers, and the specific cultural and political circumstances in Ireland that influenced Presbyterian responses to science more generally. The next two sections examine two specific applications by Irish Presbyterians of the term ‘science’: first, the emergence of a distinctive Presbyterian theology of nature and the application of inductive scientific methodology to the study of theology, and second, the Presbyterian conviction that mind had ascendancy over matter which underpinned their commitment to the development of a science of the mind. The final two sections examine, in turn, the relationship between science and an eschatological reading of the signs of the times, and attitudes to Darwinian evolution in the fifteen years between the publication of The Origin of Species in 1859 and Tyndall's speech in 1874.
Resumo:
This study investigated two hypotheses regarding the mapping of perception to action during imitation. The first hypothesis predicted that as children’s cognitive capacities increase the tendency to map one goal and disregard others during imitation should decrease. This hypothesis was tested by comparing the performances of 168 4- to 7-year-olds in a gestural imitation task developed by Bekkering, Wohlschläger, and Gattis. The second hypothesis predicted that reducing the mapping between perception and action should reduce the demands on the cognitive resources of the child. This hypothesis was tested by creating a condition in which perception and action overlapped by sharing objects between experimenter and child. In three experimental conditions, an adult modelled four gestures, directed at either: 1) one of two sets of round stickers (proprietary objects); 2) the same location on the table, without any sticker (no objects); or 3) one set of round stickers, which were shared with the child (shared objects). The results confirmed both hypotheses. Four- and five-year-olds imitated less accurately when imitation involved mapping of both objects and movements (proprietary and shared objects) than when imitation involved mapping movements only (no objects). Seven-year-olds imitated accurately in all three conditions, demonstrating that increased cognitive capacity allowed them to map multiple goals from perception to action. Most importantly, reducing the mapping between perception and action in the shared objects condition facilitated imitation, specifically for the transitional group, 6-year-olds. We conclude that mapping between perception and action is not direct, but resembles mapping relations in analogical reasoning: cognitive processes mediate mapping from perception to action.
Resumo:
OBJECTIVE:
To compare the performance of patients with mild-moderate Alzheimer's disease (AD) and vascular dementia (VaD) on tests of information processing and attention.
METHOD:
Patients with AD (n=75) and VaD (n=46) were recruited from a memory clinic along with dementia-free participants (n=28). They underwent specific tests of attention from the Cognitive Drug Research battery, and pen and paper tests including Colour Trails A and B and Stroop. All patients had a CT brain scan that was independently scored for white-matter change/ischaemia.
RESULTS:
Attention was impaired in both AD and VaD patients. VaD patients had more impaired choice reaction times and were less accurate on a vigilance test measuring sustained attention. Deficits in selective and divided attention occurred in both patient groups and showed the strongest correlations with Mini Mental State Examination scores.
CONCLUSION:
This study demonstrates problems with the attentional network in mild-moderate AD and VaD. The authors propose that attention should be tested routinely in a memory clinic setting.
Resumo:
The motivation for this paper is to present procedures for automatically creating idealised finite element models from the 3D CAD solid geometry of a component. The procedures produce an accurate and efficient analysis model with little effort on the part of the user. The technique is applicable to thin walled components with local complex features and automatically creates analysis models where 3D elements representing the complex regions in the component are embedded in an efficient shell mesh representing the mid-faces of the thin sheet regions. As the resulting models contain elements of more than one dimension, they are referred to as mixed dimensional models. Although these models are computationally more expensive than some of the idealisation techniques currently employed in industry, they do allow the structural behaviour of the model to be analysed more accurately, which is essential if appropriate design decisions are to be made. Also, using these procedures, analysis models can be created automatically whereas the current idealisation techniques are mostly manual, have long preparation times, and are based on engineering judgement. In the paper the idealisation approach is first applied to 2D models that are used to approximate axisymmetric components for analysis. For these models 2D elements representing the complex regions are embedded in a 1D mesh representing the midline of the cross section of the thin sheet regions. Also discussed is the coupling, which is necessary to link the elements of different dimensionality together. Analysis results from a 3D mixed dimensional model created using the techniques in this paper are compared to those from a stiffened shell model and a 3D solid model to demonstrate the improved accuracy of the new approach. At the end of the paper a quantitative analysis of the reduction in computational cost due to shell meshing thin sheet regions demonstrates that the reduction in degrees of freedom is proportional to the square of the aspect ratio of the region, and for long slender solids, the reduction can be proportional to the aspect ratio of the region if appropriate meshing algorithms are used.
Resumo:
Understanding how the timing of motor output is coupled to sensory temporal information is largely based on synchronisation of movements through small motion gaps (finger taps) to mostly empty sensory intervals (discrete beats). This study investigated synchronisation of movements between target barriers over larger motion gaps when closing time gaps of intervals were presented as either continuous, dynamic sounds, or discrete beats. Results showed that although synchronisation errors were smaller for discrete sounds, the variability of errors was lower for continuous sounds. Furthermore, finger movement between targets was found to be more sinusoidal when continuous sensory information was presented during intervals compared to discrete. When movements were made over larger amplitudes, synchronisation errors tended to be more positive and movements between barriers more sinusoidal, than for movements over shorter amplitudes. These results show that the temporal control of movement is not independent from the form of the sensory information that specifies time gaps or the magnitude of the movement required for synchronisation.
Resumo:
We present first-season infrared (IR) and optical photometry and spectroscopy of the Type Ia Supernova 1998bu in M96. We also report optical polarimetry of this event. SN 1998bu is one of the closest type Ia supernovae of modern times, and the distance of its host galaxy is well determined. We find that SN 1998bu is both photometrically and spectroscopically normal. However, the extinction to this event is unusually high, with A(V) = 1.0 +/- 0.11. We find that SN 1998bu peaked at an intrinsic M-V = -19.37 +/- 0.23. Adopting a distance modulus of 30.25 (Tanvir et al.) and using Phillips et al.'s relations for the Hubble constant, we obtain H-0 = 70.4 +/- 4.3 km s(-1) Mpc(-1). Combination of our IR photometry with those of Jha et al. provides one of the most complete early-phase IR light curves for a SN Ia published so far. In particular, SN 1998bu is the first normal SN Ia for which good pre-t(Bmax) IR coverage has been obtained. It reveals that the J, H and K light curves peak about 5 days earlier than the flux in the B-band curve.
Resumo:
The relationship between biodiversity and ecological processes is currently the focus of considerable research effort, made all the more urgent by the rate of biodiversity loss world-wide. Rigorous experimental approaches to this question have been dominated by terrestrial ecologists, but shallow-water marine systems offer great opportunities by virtue of their relative ease of manipulation, fast response times and well-understood effects of macrofauna on sediment processes. In this paper, we describe a series of experiments whereby species richness has been manipulated in a controlled way and the concentrations of nutrients (ammonium, nitrate and phosphate) in the overlying water measured under these different treatments. The results indicate variable effects of species and location on ecosystem processes, and are discussed in the context of emerging mainstream ecological theory on biodiversity and ecosystem relations. Extensions of the application of the experimental approach to species-rich, large-scale benthic systems are discussed and the potential for novel analyses of existing data sets is highlighted. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
BACKGROUND & AIMS:
Gastric cancer (GC) is a heterogeneous disease comprising multiple subtypes that have distinct biological properties and effects in patients. We sought to identify new, intrinsic subtypes of GC by gene expression analysis of a large panel of GC cell lines. We tested if these subtypes might be associated with differences in patient survival times and responses to various standard-of-care cytotoxic drugs.
METHODS:
We analyzed gene expression profiles for 37 GC cell lines to identify intrinsic GC subtypes. These subtypes were validated in primary tumors from 521 patients in 4 independent cohorts, where the subtypes were determined by either expression profiling or subtype-specific immunohistochemical markers (LGALS4, CDH17). In vitro sensitivity to 3 chemotherapy drugs (5-fluorouracil, cisplatin, oxaliplatin) was also assessed.
RESULTS:
Unsupervised cell line analysis identified 2 major intrinsic genomic subtypes (G-INT and G-DIF) that had distinct patterns of gene expression. The intrinsic subtypes, but not subtypes based on Lauren's histopathologic classification, were prognostic of survival, based on univariate and multivariate analysis in multiple patient cohorts. The G-INT cell lines were significantly more sensitive to 5-fluorouracil and oxaliplatin, but more resistant to cisplatin, than the G-DIF cell lines. In patients, intrinsic subtypes were associated with survival time following adjuvant, 5-fluorouracil-based therapy.
CONCLUSIONS:
Intrinsic subtypes of GC, based on distinct patterns of expression, are associated with patient survival and response to chemotherapy. Classification of GC based on intrinsic subtypes might be used to determine prognosis and customize therapy.
Resumo:
The influence of predation in structuring ecological communities can be informed by examining the shape and magnitude of the functional response of predators towards prey. We derived functional responses of the ubiquitous intertidal amphipod Echinogammarus marinus towards one of its preferred prey species, the isopod Jaera nordmanni. First, we examined the form of the functional response where prey were replaced following consumption, as compared to the usual experimental design where prey density in each replicate is allowed to deplete. E. marinus exhibited Type II functional responses, i.e. inversely density-dependent predation of J. nordmanni that increased linearly with prey availability at low densities, but decreased with further prey supply. In both prey replacement and non-replacement experiments, handling times and maximum feeding rates were similar. The non-replacement design underestimated attack rates compared to when prey were replaced. We then compared the use of Holling’s disc equation (assuming constant prey density) with the more appropriate Rogers’ random predator equation (accounting for prey depletion) using the prey non-replacement data. Rogers’ equation returned significantly greater attack rates but lower maximum feeding rates, indicating that model choice has significant implications for parameter estimates. We then manipulated habitat complexity and found significantly reduced predation by the amphipod in complex as opposed to simple habitat structure. Further, the functional response changed from a Type II in simple habitats to a sigmoidal, density-dependent Type III response in complex habitats, which may impart stability on the predator−prey interaction. Enhanced habitat complexity returned significantly lower attack rates, higher handling times and lower maximum feeding rates. These findings illustrate the sensitivity of the functional response to variations in prey supply, model selection and habitat complexity and, further, that E. marinus could potentially determine the local exclusion and persistence of prey through habitat-mediated changes in its predatory functional responses.