99 resultados para Tendon repair


Relevância:

20.00% 20.00%

Publicador:

Resumo:

At 5 and 15 weeks post-surgery, biomechanical and histological analyses of cancellous bone defects filled with the bovine trabecular bone matrix (BBM) and hydroxyapatite (Hap) particulates of dimensions 106–150 µm were investigated. It was observed that at 5 weeks post-surgery the stiffness properties of the BBM filled defects were significantly higher than those observed in the Hap filled defects (p

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Osteoporosis (OP) is one of the most prevalent bone diseases worldwide with bone fracture the major clinical consequence. The effect of OP on fracture repair is disputed and although it might be expected for fracture repair to be delayed in osteoporotic individuals, a definitive answer to this question still eludes us. The aim of this study was to clarify the effect of osteoporosis in a rodent fracture model. OP was induced in 3-month-old rats (n = 53) by ovariectomy (OVX) followed by an externally fixated, mid-diaphyseal femoral osteotomy at 6 months (OVX group). A further 40 animals underwent a fracture at 6 months (control group). Animals were sacrificed at 1, 2, 4, 6, and 8 weeks postfracture with outcome measures of histology, biomechanical strength testing, pQCT, relative BMD, and motion detection. OVX animals had significantly lower BMD, slower fracture repair (histologically), reduced stiffness in the fractured femora (8 weeks) and strength in the contralateral femora (6 and 8 weeks), increased body weight, and decreased motion. This study has demonstrated that OVX is associated with decrease in BMD (particularly in trabecular bone) and a reduction in the mechanical properties of intact bone and healing fractures. The histological, biomechanical, and radiological measures of union suggest that OVX delayed fracture healing. (C) 2007 Orthopaedic Research Society. Published by Wiley Periodicals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE. Vascular repair by marrow-derived endothelial progenitor cells (EPCs) is impaired during diabetes, although the precise mechanism of this dysfunction remains unknown. The hypothesis for the study was that progressive basement membrane (BM) modification by advanced glycation end products (AGEs) contributes to impairment of EPC reparative function after diabetes-related endothelial injury.

METHODS. EPCs isolated from peripheral blood were characterized by immunocytochemistry and flow cytometry. EPC interactions on native or AGE-modified fibronectin (AGE-FN) were studied for attachment and spreading, whereas chemotaxis to SDF-1 was assessed with the Dunn chamber assay. In addition, photoreactive agent-treated monolayers of retinal microvascular endothelial cells (RMECs) produced circumscribed areas of apoptosis and the ability of EPCs to “endothelialize” these wounds was evaluated.

RESULTS. EPC attachment and spreading on AGE-FN was reduced compared with control cells (P < 0.05–0.01) but was significantly restored by pretreatment with Arg-Gly-Asp (RGD). Chemotaxis of EPCs was abolished on AGE-FN but was reversed by treatment with exogenous RGD. On wounded RMEC monolayers, EPCs showed clustering at the wound site, compared with untreated regions (P < 0.001); AGE-FN significantly reduced this targeting response (P < 0.05). RGD supplementation enhanced EPC incorporation in the monolayer, as determined by EPC participation in tight junction formation and restoration of transendothelial electric resistance (TEER).

CONCLUSIONS. AGE-modification of vascular substrates impairs EPC adhesion, spreading, and migration; and alteration of the RGD integrin recognition motif plays a key role in these responses. The presence of AGE adducts on BM compromises repair by EPC with implications for vasodegeneration during diabetic microvasculopathy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using RNA interference techniques to knock down key proteins in two major double-strand break (DSB) repair pathways (DNA-PKcs for nonhomologous end joining, NHEJ, and Rad54 for homologous recombination, HR), we investigated the influence of DSB repair factors on radiation mutagenesis at the autosomal thymidine kinase (TK) locus both in directly irradiated cells and in unirradiated bystander cells. We also examined the role of p53 (TP53) in these processes by using cells of three human lymphoblastoid cell lines from the same donor but with differing p53 status (TK6 is p53 wild-type, NH32 is p53 null, and WTK1 is p53 mutant). Our results indicated that p53 status did not affect either the production of radiation bystander mutagenic signals or the response to these signals. In directly irradiated cells, knockdown of DNA-PKcs led to an increased mutant fraction in WTK1 cells and decreased mutant fractions in TK6 and NH32 cells. In contrast, knockdown of DNA-PKcs led to increased mutagenesis in bystander cells regardless of p53 status. In directly irradiated cells, knockdown of Rad54 led to increased induced mutant fractions in WTK1 and NH32 cells, but the knockdown did not affect mutagenesis in p53 wild-type TK6 cells. In all cell lines, Rad54 knockdown had no effect on the magnitude of bystander mutagenesis. Studies with extracellular catalase confirmed the involvement of H2O2 in bystander signaling. Our results demonstrate that DSB repair factors have different roles in mediating mutagenesis in irradiated and bystander cells. (C) 2008 by Radiation Research Society.