19 resultados para TRANSITION-METALS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Density functional theory calculations are used to study the stability of molecularly adsorbed CO and CN over transition metal surfaces. The minimum energy reaction pathways, corresponding reaction barriers (E-a), and reaction enthalpies (Delta H) for the dissociation of CO and CN to atomic products over the 4d transition metals from Zr to Pd have been determined. CO is found to be the more stable adsorbate on the right hand side of the period (from Tc onwards), whereas CN is the more stable surface species on the early metals (Zr, Nb and Mo). A single linear relationship is found to exist that correlates the barriers of both reactions with their respective reaction enthalpies. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The density functional theory (DFT) based hard-soft acid-base (HSAB) reactivity indices, including the electrophilicity index, have been successfully applied to many areas of molecular chemistry. In this work we test the applicability of such an approach to fundamental surface chemistry. We have considered, as prototypical surface reactions, both the hydrogenation of atomic nitrogen and the dissociative adsorption of the NH molecular radical. By use of a DFT methodology, the minimum energy reaction pathways, and corresponding reaction barriers, of the above reactions over Zr(001), Nb(110), Mo(110), Tc(001), Ru(001), Rh(111), and Pd(111) have been determined. By consideration of the chemical potential and chemical hardness of the surface metal atoms, and the principle of electronegativity equalization, it is found that the charge transferred to the NH radical during the process of dissociative adsorption correlates very well with that determined by Mulliken population analysis. Furthermore, it is found that the stability of the NH/surface transition state complex relates directly to this charge transfer and that the trend in transition state stability predicted by a HSAB; treatment correlates very strongly with that determined by DFT calculations. With regards to N hydrogenation, we find that during the course of the reaction, H loses cohesion to the surface, as it must migrate from a 3-fold hollow site to either a bridge or top site, to react with N. Partial density of states (PDOS) and Mulliken population analysis reveal that this loss of bonding is accompanied by charge transfer from H to the surface metal atoms. Moreover, by simple modeling, we show that the reaction barriers are directly proportional to this mandatory charge transfer. Indeed, it is found that the reaction barriers correlate very well with the electrophilicity index of the metal atoms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrogenation reactions at transition metal surfaces comprise a key set of reactions in heterogeneous catalysis. In this paper, density functional theory methods are employed to take an in-depth look at this fundamental reaction type. The energetics of hydrogenation of atomic C, N, and O have been studied in some detail over low index Zr, Nb, Mo, Tc, Ru, Rh, and Pd surfaces. Detailed bonding analysis has also been employed to track carefully the chemical changes taking place during reaction. A number of interesting horizontal and vertical trends have been uncovered relating to reactant valency and metal d-band filling. A general correlation has also been found between the reaction barriers and the reaction potential energies. Moreover, when each reaction is considered independently, correlation has been found to improve with decreasing reactant valency. Bonding analysis has pointed to this being related to the relative position of the transition state along the reaction coordinate and has shown that as reactant valency decreases, the transition states become progressively later.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We have measured conductance histograms of atomic point contacts made from the noble-transition-metal alloys CuNi, AgPd, and AuPt for a concentration ratio of 1:1. For all alloys these histograms at low-bias voltage (below 300 mV) resemble those of the noble metals, whereas at high bias (above 300 mV) they resemble those of the transition metals. We interpret this effect as a change in the composition of the point contact with bias voltage. We discuss possible explanations in terms of electromigration and differential diffusion induced by current heating.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The dissociative adsorption of N-2 has been studied at both monatomic steps and flat regions on the surfaces of the 4d transition metals from Zr to Pd. Using density functional theory (DFT) calculations, we have determined and analyzed the trends in both straight reactivity and structure sensitivity across the periodic table. With regards to reactivity, we find that the trend in activation energy (Ea) is determined mainly by a charge transfer from the surface metal atoms to the N atoms during transition state formation, namely, the degree of ionicity of the N-surface bond at the transition state. Indeed, we find that the strength of the metal-N bond at the transition state (and therefore the trend in Ea) can be predicted by the difference in Mulliken electronegativity between the metal and N. Structure sensitivity is analyzed in terms of geometric and electronic effects. We find that the lowering of Ea due to steps is more pronounced on the right-hand side of the periodic table. It is found that for the early transition metals the geometric and electronic effects work in opposition when going from terrace to step active site. In the case of the late 4d metals, however, these effects work in combination, producing a more marked reduction in Ea.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Dissociative adsorption is one of the most important reactions in catalysis. In this communication we propose a model aiming to generalize the important factors that affect dissociation reactions. Specifically, for a dissociation reaction, say AB -->A + B, the model connects the dissociation barrier with the association barrier, the chemisorption energies of A and B at the final state and the bonding energy of AB in the gas phase. To apply this model, we have calculated CO dissociation on Ru(0001), Rh(111), Pd(111) (4d transition metals), Os(0001), Ir(111), and Pt(111) (5d transition metals) using density function theory (DFT). All the barriers are determined. We find that the DFT results can be rationalized within the model. The model can also be used to explain many experimental observations. (C) 2001 American Institute of Physics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Transition metals are often introduced to a catalyst as promoters to improve catalytic performance. In this work, we study the promotion effect of transition metals on Co, the preferred catalytic metal for Fischer-Tropsch synthesis because of its good compromise of activity, selectivity and stability, for ethylene chemisorption using density functional theory (DFT) calculations, aiming to provide some insight into improving the alpha-olefin selectivity. In order to obtain the general trend of influence on ethylene chemisorption, twelve transition metals (Zr, Mn, Re, Ru, Rh, It, Ni, Pd, Pt, Cu, Ag and Au) are calculated. We find that the late transition metals (e.g. Pd and Cu) can decrease ethylene chemisorption energy. These results suggest that the addition of the late transition metals may improve alpha-olefin selectivity. Electronic structure analyses (both charge density distributions and density of states) are also performed and the understanding of calculated results is presented. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To predict where a catalytic reaction should occur is a fundamental issue scientifically. Technologically, it is also important because it can facilitate the catalyst's design. However, to date, the understanding of this issue is rather limited. In this work, two types of reactions, CH4 CH3 + H and CO C + 0 on two transition metal surfaces, were chosen as model systems aiming to address in general where a catalytic reaction should occur. The dissociations of CH4 - CH3 + H and CO --> C + O and their reverse reactions on flat, stepped, and kinked Rh and Pd surfaces were studied in detail. We find the following: First, for the CH4 Ch(3) + H reaction, the dissociation barrier is reduced by similar to0.3 eV on steps and kinks as compared to that on flat surfaces. On the other hand, there is essentially no difference in barrier for the association reaction of CH3 + H on the flat surfaces and the defects. Second, for the CO C + 0 reaction, the dissociation barrier decreases dramatically (more than 0.8 eV on Rh and Pd) on steps and kinks as compared to that on flat surfaces. In contrast to the CH3 + H reaction, the C + 0 association reaction also preferentially occurs on steps and kinks. We also present a detailed analysis of the reaction barriers in which each barrier is decomposed quantitatively into a local electronic effect and a geometrical effect. Our DFT calculations show that surface defects such as steps and kinks can largely facilitate bond breaking, while whether the surface defects could promote bond formation depends on the individual reaction as well as the particular metal. The physical origin of these trends is identified and discussed. On the basis of our results, we arrive at some simple rules with respect to where a reaction should occur: (i) defects such as steps are always favored for dissociation reactions as compared to flat surfaces; and (ii) the reaction site of the association reactions is largely related to the magnitude of the bonding competition effect, which is determined by the reactant and metal valency. Reactions with high valency reactants are more likely to occur on defects (more structure-sensitive), as compared to reactions with low valency reactants. Moreover, the reactions on late transition metals are more likely to proceed on defects than those on the early transition metals.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A method for investigating the dynamics of atomic magnetic moments in current-carrying magnetic point contacts under bias is presented. This combines the nonequilibrium Green's function (NEGF) method for evaluating the current and the charge density with a description of the dynamics of the magnetization in terms of quasistatic thermally activated transitions between stationary configurations. This method is then implemented in a tight-binding (TB) model with parameters chosen to simulate the main features of the electronic structures of magnetic transition metals. We investigate the domain wall (DW) migration in magnetic monoatomic chains sandwiched between magnetic leads, and for realistic parameters find that collinear arrangement of the magnetic moments of the chain is always favorable. Several stationary magnetic configurations are identified, corresponding to a different number of Bloch walls in the chain and to a different current. The relative stability of these configurations depends on the geometrical details of the junction and on the bias; however, we predict transitions between different configurations with activation barriers of the order of a few tens of meV. Since different magnetic configurations are associated with different resistances, this suggests an intrinsic random telegraph noise at microwave frequencies in the I-V curves of magnetic atomic point contacts at room temperature. Finally, we investigate whether or not current-induced torques are conservative.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We describe a self-consistent magnetic tight-binding theory based in an expansion of the Hohenberg-Kohn density functional to second order, about a non-spin-polarized reference density. We show how a first order expansion about a density having a trial input magnetic moment leads to a fixed moment model. We employ a simple set of tight-binding parameters that accurately describes electronic structure and energetics, and show these to be transferable between first row transition metals and their alloys. We make a number of calculations of the electronic structure of dilute Cr impurities in Fe, which we compare with results using the local spin density approximation. The fixed moment model provides a powerful means for interpreting complex magnetic configurations in alloys; using this approach, we are able to advance a simple and readily understood explanation for the observed anomaly in the enthalpy of mixing.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An understanding of surface hydrogenation reactivity is a prevailing issue in chemistry and vital to the rational design of future catalysts. In this density-functional theory study, we address hydrogenation reactivity by examining the reaction pathways for N+H -> NH and NH+H -> NH2 over the close-packed surfaces of the 4d transition metals from Zr-Pd. It is found that the minimum-energy reaction pathway is dictated by the ease with which H can relocate between hollow-site and top-site adsorption geometries. A transition state where H is close to a top site reduces the instability associated with bond sharing of metal atoms by H and N (NH) (bonding competition). However, if the energy difference between hollow-site and top-site adsorption energies (Delta E-H) is large this type of transition state is unfavorable. Thus we have determined that hydrogenation reactivity is primarily controlled by the potential-energy surface of H on the metal, which is approximated by Delta E-H, and that the strength of N (NH) chemisorption energy is of less importance. Delta E-H has also enabled us to make predictions regarding the structure sensitivity of these reactions. Furthermore, we have found that the degree of bonding competition at the transition state is responsible for the trend in reaction barriers (E-a) across the transition series. When this effect is quantified a very good linear correlation is found with E-a. In addition, we find that when considering a particular type of reaction pathway, a good linear correlation is found between the destabilizing effects of bonding competition at the transition state and the strength of the forming N-H (HN-H) bond. (c) 2006 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

2-Aryl-substituted imidazo[4,5-f]-1,10-phenanthrolines were used as building blocks for metal-containing liquid crystals (metallomesogens). Imidazo[4,5-f]-1,10-phenanthrolines are versatile ligands because they can form stable complexes with various d-block transition metals, including platinum(II) and rhenium(I), as well as with lanthanide(III) and uranyl ions and they can easily be structurally modified by a judicious choice of benzaldehyde precursor. None of the ligands designed for this study were liquid-crystalline. However, mesomorphism could be induced by their coordination to various metallic fragments. The thermal behavior of the metal complexes depended on the metal-to-ligand ratio and the substitution pattern of the coordinating ligands. Complexes with a metal-to-ligand ratio of 1:1 [ML, with M = Pt(II), Re(I)] were not liquid-crystal line. The lanthanide(III) complexes with a metal-to-ligand ratio of 1:2 [ML2 with M = Ln(III)] formed an enantiotropic cubic mesophase or were not liquid-crystalline, depending on the nature of the lanthanide(III) ion and the substitution pattern of the ligands. A 1:3 uranyl complex of the type [ML3](2+) exhibited a hexagonal columnar mesophase over a broad temperature range. Self-assembled monolayers of a europium(III) complex were investigated by scanning tunneling microscopy, which revealed that the complex formed well-ordered structures over long distances at the 1-octanoic acid-graphite interface. The rhenium(I) complexes and the europium(III) complexes with 2-thenoyl-trifluoroacetonate or dibenzoylmethanate and imidazo[4,5-f]-1,10-phenanthroline showed good luminescence properties.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the exploration of highly efficient direct ethanol fuel cells (DEFCs), how to promote the CO2 selectivity is a key issue which remains to be solved. Some advances have been made, for example, using bimetallic electrocatalysts, Rh has been found to be an efficient additive to platinum to obtain high CO2 selectivity experimentally. In this work, the mechanism of ethanol electrooxidation is investigated using first principles method. It is found that CH3CHOH* is the key intermediate during ethanol electrooxidation and the activity of β-dehydrogenation is the rate determining factor that affects the completeness of ethanol oxidation. In addition, a series of transition metals (Ru, Rh, Pd, Os and Ir) are alloyed on the top layer of Pt(111) in order to analyze their effects. The elementary steps, α-, β-C-H bond and C-C bond dissociations are calculated on these bimetallic M/Pt(111) surfaces and the formation potential of OH* from water dissociation is also calculated. We find that the active metals increase the activity of β-dehydrogenation but lower the OH* formation potential resulting in the active site being blocked. By considering both β-dehydrogenation and OH* formation, Ru, Os and Ir are identified to be unsuitable for the promotion of CO2 selectivity and only Rh is able to increase the selectivity of CO2 in DEFCs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A general method to prepare organic-inorganic hybrid aerogels has been presented. A series of organic-inorganic hybrid aerogels were successfully produced from 3d trivalent transition metals (Cr3+, Fe3+) and bridging carboxylic acids. Gelation of the Cr(III) gels was achieved by heating the precursor solution to temperatures above 80 degrees C, which is in sharp contrast to usual supramolecular gels. Among a range of ligands used, highly porous aerogels could be prepared from rigid carboxylate, e.g. 1,4-benzenedicarboxylate and 1,3,5-benzenetricarboxylate. The porous aerogels can be described as a coherent, rigid spongy network of continuous nanometre-sized particles, which is significantly different from the usual fibrous network of supramolecular gels. The aerogels have tunable porous structures with micro-and mesoporosity depending on their reactant concentrations. Their surface areas, pore volumes, and average pore sizes were analysed by using nitrogen sorption, and the accessibility of the pores to bulky molecules was also evaluated. It represents a strategy to prepare hybrid materials with large porosity utilising structurally simple building blocks as precursors.