205 resultados para THUMB CONFORMATION TRANSITIONS
Resumo:
Analysis of molecular interaction and conformational dynamics of biomolecules is of paramount importance in understanding of their vital functions in complex biological systems, disease detection, and new drug development. Plasmonic biosensors based upon surface plasmon resonance and localized surface plasmon resonance have become the predominant workhorse for detecting accumulated biomass caused by molecular binding events. However, unlike surface-enhanced Raman spectroscopy (SERS), the plasmonic biosensors indeed are not suitable tools to interrogate vibrational signatures of conformational transitions required for biomolecules to interact. Here, we show that plasmonic metamaterials can offer two transducing channels for parallel acquisition of optical transmission and sensitive SERS spectra at the biointerface, simultaneously probing the conformational states and binding affinity of biomolecules, e.g. G-quadruplexes, in different environments (Fig. 1). We further demonstrate the use of the metamaterials for fingerprinting and detection of arginine-glycine-glycine domain of nucleolin, a cancer biomarker which specifically binds to a G-quadruplex, with the picomolar sensitivity. The dual-mode nanosensor will significantly contribute to unraveling the complexes of the conformational dynamics of biomolecules as well as to improving specificity of biodetection assays.
Resumo:
Analysis of molecular interaction and conformational dynamics of biomolecules is of paramount importance in understanding of their vital functions in complex biological systems, disease detection, and new drug development. Plasmonic biosensors based upon surface plasmon resonance and localized surface plasmon resonance have become the predominant workhorse for detecting accumulated biomass caused by molecular binding events. However, unlike surface-enhanced Raman spectroscopy (SERS), the plasmonic biosensors indeed are not suitable tools to interrogate vibrational signatures of conformational transitions required for biomolecules to interact. Here, we show that highly tunable plasmonic metamaterials can offer two transducing channels for parallel acquisition of optical transmission and sensitive SERS spectra at the biointerface, simultaneously probing the conformational states and binding affinity of biomolecules, e.g. G-quadruplexes, in different environments. We further demonstrate the use of the metamaterials for fingerprinting and detection of arginine-glycine-glycine domain of nucleolin, a cancer biomarker which specifically binds to a G-quadruplex, with the picomolar sensitivity.
Resumo:
Effective collision strengths are presented for the Fe-peak element Fe III at electron temperatures (Te in degrees Kelvin) in the range 2 × 103 to 1 × 106. Forbidden transitions results are given between the 3d6, 3d54s, and the 3d54p manifolds applicable to the modeling of laboratory and astrophysical plasmas.