559 resultados para Structure en couches


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The eigenphase formulation of Blatt and Biedenharn is applied to fine-structure transitions in *P atoms colliding with ‘S perturbers. Consideration is given to the limit of weak spin-orbit interaction. If the eigenphases are equal to the phaseshifts for elastic scattering by the molecular potentials then the expression for the total cross section reduces to the expression derived in the elastic approximation. However, a numerical comparison for the Li(2p ’P) + He(’S) system shows that the elastic molecular phaseshifts are not good approximations to the eigenphases. Hence the elastic approximation cannot be reliable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this investigation we describe the preparation, physical characterisation and in vivo behaviour of solid dispersions of a liquid nutraceutical, ±-tocopherol, in Gelucire 44/14 with a view to establishing whether dispersion in this matrix may provide a means of formulating a liquid drug in a solid dosage form while also improving the oral bioavailability. Using Vitamin E Preparation USP as the source of ±-tocopherol, dispersions were prepared using a melt-fusion method with active loadings up to 50% (w/w) and characterised using differential scanning calorimetry and optical microscopy. Capsules containing 300 IU ±-tocopherol were manufactured and the absorption profiles compared to a commercial soft gelatin capsule preparation in healthy human volunteers. Confocal laser scanning microscopy (CLSM) studies were performed in order to elucidate the mechanism by which drug release may be occurring. Differential scanning calorimetry studies indicated that the presence of the active had a negligible effect on the melting profile of the carrier, indicating limited miscibility between the two components, a conclusion supported by the microscopy studies. Similarly, the dispersions were shown to exhibit a glass transition corresponding to the incorporated drug, indicating molecular cooperativity and hence phase separation from the lipid base. Despite the phase separation, it was noted that capsules stored for 18 months under ambient conditions showed no evidence of leakage. Bioavailability studies in six healthy male volunteers indicated that the Gelucire 44/14 formulation showed an approximately two-fold increase in total ±-tocopherol absorption compared to the commercial preparation. Confocal laser scanning microscopy studies indicated that, on contact with water, the dispersions formed two interfacial layers, from which the Gelucire 44/14 disperses in the liquid medium as small particles. Furthermore, evidence was obtained for the dispersed material becoming incorporated into the hydrated lipid. In conclusion, the dispersion of the liquid drug in Gelucire 44/14 appears to allow the dual advantages of the preparation of a solid formulation and improved bioavailability of this material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have made self-consistent models of the density and temperature profiles of the gas and dust surrounding embedded luminous objects using a detailed radiative transfer model together with observations of the spectral energy distribution of hot molecular cores. Using these profiles we have investigated the hot core chemistry which results when grain mantles are evaporated, taking into account the different binding energies of the mantle molecules, as well a model in which we assume that all molecules are embedded in water ice and have a common binding energy. We find that most of the resulting column densities are consistent with those observed toward the hot core G34.3+0.15 at a time around 10^4 years after central luminous star formation. We have also investigated the dependence of the chemical structure on the density profile which suggests an observational possibility of constraining density profiles from determination of the source sizes of line emission from desorbed molecules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present paper, a phase-field model is developed to simulate the formation and evolution of lamellar microstructure in γ-TiAl alloys. The mechanism of formation of TiAl lamellae proposed by Denquin and Naka is incorporated into the model. The model describes the formation and evolution of the face-centered cubic (fcc) stacking lamellar zone followed by the subsequent appearance and growth of the γ-phase, involving both the chemical composition change by atom transfer and the ordering of the fcc lattice. The thermodynamics of the model system and the interaction between the displacive and diffusional transformations are described by a non-equilibrium free energy formulated as a function of concentration and structural order parameter fields. The long-range elastic interactions, arising from the lattice misfit between the α, fcc (A1) and the various orientation variants of the γ-phase are taken into account by incorporating of the elastic strain energy into the total free energy. Simulation studies based on the model successfully predicted some essential features of the lamellar structure. It is found that the formation and evolution of the lamellar structure are predominantly controlled by the minimization of the elastic energy of the interfaces between the different fcc stacking groups, low-symmetry product phase γ and the high-symmetry α-phase, as well as between the various orientation variants of the product phase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Synucleins are small proteins that are highly expressed in brain tissue and are localised at presynaptic terminals in neurons. alpha-Synuclein has been identified as a component of intracellular fibrillar protein deposits in several neurodegenerative diseases, and two mutant forms of alpha-synuclein have been associated with autosomal-dominant Parkinson's Disease. A fragment of alpha-synuclein has also been identified as the non-Abeta component of Alzheimer's Disease amyloid. In this review we describe some structural properties of alpha-synuclein and the two mutant forms, as well as alpha-synuclein fragments, with particular emphasis on their ability to form beta-sheet on ageing and aggregate to form amyloid-like fibrils. Differences in the rates of aggregation and morphologies of the fibrils formed by alpha-synuclein and the two mutant proteins are highlighted. Interactions between alpha-synuclein and other proteins, especially those that are components of amyloid or Lewy bodies, are considered. The toxicity of alpha-synuclein and related peptides towards neurons is also discussing in relation to the aetiology of neurodegenerative diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neutron diffraction has been used to investigate the structure of liquid mixtures of 1,3-dimethylimidazolium hexafluorophosphate with benzene. Two concentrations of benzene were investigated, namely, 33 mol % and 67 mol %, and show similar structures in each case. The presence of benzene significantly alters the ionic liquid structure, in particular, in the cation-cation interactions, in agreement with the single-crystal structure described recently (Holbrey, J. D.; Reichert, W. M.; Nieuwenhuyzen, M.; Sheppard, O.; Hardacre, C.; Rogers, R. D. Chem. Commun. 2003, 476). In each case, the data was analyzed using an empirical potential structure refinement process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have carried out extensive density functional theory (DFT) calculations for possible redox states of the active center in Fe-only hydrogenases. The active center is modeled by [(H(CH(3))S)(CO)(CN(-))Fe(p)(mu-DTN)(mu-CO)Fe(d)(CO)(CN(-))(L)](z) (z is the net charge in the complex; Fe(p)= the proximal Fe, Fe(d) = the distal Fe, DTN = (-SCH(2)NHCH(2)S-), L is the ligand that bonds with the Fed at the trans position to the bridging CO). Structures of possible redox states are optimized, and CO stretching frequencies are calculated. By a detailed comparison of all the calculated structures and the vibrational frequencies with the available experimental data, we find that (i) the fully oxidized, inactive state is an Fe(II)-Fe(II) state with a hydroxyl (OH(-)) group bonded at the Fe(d), (ii) the oxidized, active state is an Fe(II)-Fe(l) complex which is consistent with the assignment of Cao and Hall (J. Am. Chem. Soc. 2001, 123, 3734), and (iii) the fully reduced state is a mixture with the major component being a protonated Fe(l)-Fe(l) complex and the other component being its self-arranged form, Fe(II)-Fe(II) hydride, Our calculations also show that the exogenous CO can strongly bond with the Fe(II)-Fe(l) species, but cannot bond with the Fe(l)-Fe(l) complex. This result is consistent with experiments that CO tends to inhibit the oxidized, active state, but not the fully reduced state. The electronic structures of all the redox states have been analyzed. It is found that a frontier orbital which is a mixing state between the e(g) of Fe and the 2pi of the bridging CO plays a key role concerning the reactivity of Fe-only hydrogenases: (1) it is unoccupied in the fully oxidized, inactive state, half-occupied in the oxidized, active state, and fully occupied in the fully reduced state; (ii) the e(g)-2pi orbital is a bonding state, and this is the key reason for stability of the low oxidation states, such as Fe(l)-Fe(l) complexes; and (iii) in the e(g)-2pi orbital more charge accumulates between the bridging CO and the Fe(d) than between the bridging CO and the Fe(p), and the occupation increase in this orbital will enhance the bonding between the bridging CO and the Fe(d), leading to the bridging-CO shift toward the Fe(d).