81 resultados para Stochastic equation,
Resumo:
A nonperturbative nonlinear statistical approach is presented to describe turbulent magnetic systems embedded in a uniform mean magnetic field. A general formula in the form of an ordinary differential equation for magnetic field-line wandering (random walk) is derived. By considering the solution of this equation for different limits several new results are obtained. As an example, it is demonstrated that the stochastic wandering of magnetic field-lines in a two-component turbulence model leads to superdiffusive transport, contrary to an existing diffusive picture. The validity of quasilinear theory for field-line wandering is discussed, with respect to different turbulence geometry models, and previous diffusive results are shown to be deduced in appropriate limits.
Resumo:
This paper investigated the problem of confined flow under dams and water retaining structuresusing stochastic modelling. The approach advocated in the study combined a finite elementsmethod based on the equation governing the dynamics of incompressible fluid flow through aporous medium with a random field generator that generates random hydraulic conductivity basedon lognormal probability distribution. The resulting model was then used to analyse confined flowunder a hydraulic structure. Cases for a structure provided with cutoff wall and when the wall didnot exist were both tested. Various statistical parameters that reflected different degrees ofheterogeneity were examined and the changes in the mean seepage flow, the mean uplift forceand the mean exit gradient observed under the structure were analysed. Results reveal that underheterogeneous conditions, the reduction made by the sheetpile in the uplift force and exit hydraulicgradient may be underestimated when deterministic solutions are used.
Resumo:
Thermocouples are one of the most popular devices for temperature measurement due to their robustness, ease of manufacture and installation, and low cost. However, when used in certain harsh environments, for example, in combustion systems and engine exhausts, large wire diameters are required, and consequently the measurement bandwidth is reduced. This article discusses a software compensation technique to address the loss of high frequency fluctuations based on measurements from two thermocouples. In particular, a difference equation sDEd approach is proposed and compared with existing methods both in simulation and on experimental test rig data with constant flow velocity. It is found that the DE algorithm, combined with the use of generalized total least squares for parameter identification, provides better performance in terms of time constant estimation without any a priori assumption on the time constant ratios of the thermocouples.
Resumo:
The characterization of thermocouple sensors for temperature measurement in varying-flow environments is a challenging problem. Recently, the authors introduced novel difference-equation-based algorithms that allow in situ characterization of temperature measurement probes consisting of two-thermocouple sensors with differing time constants. In particular, a linear least squares (LS) lambda formulation of the characterization problem, which yields unbiased estimates when identified using generalized total LS, was introduced. These algorithms assume that time constants do not change during operation and are, therefore, appropriate for temperature measurement in homogenous constant-velocity liquid or gas flows. This paper develops an alternative ß-formulation of the characterization problem that has the major advantage of allowing exploitation of a priori knowledge of the ratio of the sensor time constants, thereby facilitating the implementation of computationally efficient algorithms that are less sensitive to measurement noise. A number of variants of the ß-formulation are developed, and appropriate unbiased estimators are identified. Monte Carlo simulation results are used to support the analysis.
Resumo:
A flexible, mass-conservative numerical technique for solving the advection-dispersion equation for miscible contaminant transport is presented. The method combines features of puff transport models from air pollution studies with features from the random walk particle method used in water resources studies, providing a deterministic time-marching algorithm which is independent of the grid Peclet number and scales from one to higher dimensions simply. The concentration field is discretised into a number of particles, each of which is treated as a point release which advects and disperses over the time interval. The dispersed puff is itself discretised into a spatial distribution of particles whose masses can be pre-calculated. Concentration within the simulation domain is then calculated from the mass distribution as an average over some small volume. Comparison with analytical solutions for a one-dimensional fixed-duration concentration pulse and for two-dimensional transport in an axisymmetric flow field indicate that the algorithm performs well. For a given level of accuracy the new method has lower computation times than the random walk particle method.
Resumo:
The chaotic profile of dust grain dynamics associated with dust-acoustic oscillations in a dusty plasma is considered. The collective behaviour of the dust plasma component is described via a multi-fluid model, comprising Boltzmann distributed electrons and ions, as well as an equation of continuity possessing a source term for the dust grains, the dust momentum and Poisson's equations. A Van der Pol–Mathieu-type nonlinear ordinary differential equation for the dust grain density dynamics is derived. The dynamical system is cast into an autonomous form by employing an averaging method. Critical stability boundaries for a particular trivial solution of the governing equation with varying parameters are specified. The equation is analysed to determine the resonance region, and finally numerically solved by using a fourth-order Runge–Kutta method. The presence of chaotic limit cycles is pointed out.
Resumo:
The characterization of thermocouple sensors for temperature measurement in variable flow environments is a challenging problem. In this paper, novel difference equation-based algorithms are presented that allow in situ characterization of temperature measurement probes consisting of two-thermocouple sensors with differing time constants. Linear and non-linear least squares formulations of the characterization problem are introduced and compared in terms of their computational complexity, robustness to noise and statistical properties. With the aid of this analysis, least squares optimization procedures that yield unbiased estimates are identified. The main contribution of the paper is the development of a linear two-parameter generalized total least squares formulation of the sensor characterization problem. Monte-Carlo simulation results are used to support the analysis.
Resumo:
We present results from three-dimensional protein folding simulations in the HP-model on ten benchmark problems. The simulations are executed by a simulated annealing-based algorithm with a time-dependent cooling schedule. The neighbourhood relation is determined by the pull-move set. The results provide experimental evidence that the maximum depth D of local minima of the underlying energy landscape can be upper bounded by D < n(2/3). The local search procedure employs the stopping criterion (In/delta)(D/gamma) where m is an estimation of the average number of neighbouring conformations, gamma relates to the mean of non-zero differences of the objective function for neighbouring conformations, and 1-delta is the confidence that a minimum conformation has been found. The bound complies with the results obtained for the ten benchmark problems. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
A family of stochastic gradient algorithms and their behaviour in the data echo cancellation work platform are presented. The cost function adaptation algorithms use an error exponent update strategy based on an absolute error mapping, which is updated at every iteration. The quadratic and nonquadratic cost functions are special cases of the new family. Several possible realisations are introduced using these approaches. The noisy error problem is discussed and the digital recursive filter estimator is proposed. The simulation outcomes confirm the effectiveness of the proposed family of algorithms.