39 resultados para Spin-polarized electronic transport


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method for investigating the dynamics of atomic magnetic moments in current-carrying magnetic point contacts under bias is presented. This combines the nonequilibrium Green's function (NEGF) method for evaluating the current and the charge density with a description of the dynamics of the magnetization in terms of quasistatic thermally activated transitions between stationary configurations. This method is then implemented in a tight-binding (TB) model with parameters chosen to simulate the main features of the electronic structures of magnetic transition metals. We investigate the domain wall (DW) migration in magnetic monoatomic chains sandwiched between magnetic leads, and for realistic parameters find that collinear arrangement of the magnetic moments of the chain is always favorable. Several stationary magnetic configurations are identified, corresponding to a different number of Bloch walls in the chain and to a different current. The relative stability of these configurations depends on the geometrical details of the junction and on the bias; however, we predict transitions between different configurations with activation barriers of the order of a few tens of meV. Since different magnetic configurations are associated with different resistances, this suggests an intrinsic random telegraph noise at microwave frequencies in the I-V curves of magnetic atomic point contacts at room temperature. Finally, we investigate whether or not current-induced torques are conservative.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An overview of a many-body approach to calculation of electronic transport in molecular systems is given. The physics required to describe electronic transport through a molecule at the many-body level, without relying on commonly made assumptions such as the Landauer formalism or linear response theory, is discussed. Physically, our method relies on the incorporation of scattering boundary conditions into a many-body wavefunction and application of the maximum entropy principle to the transport region. Mathematically, this simple physical model translates into a constrained nonlinear optimization problem. A strategy for solving the constrained optimization problem is given. (C) 2004 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the interplay between magnetic and structural dynamics in ferromagnetic atomic point contacts. In particular, we look at the effect of the atomic relaxation on the energy barrier for magnetic domain wall migration and, reversely, at the effect of the magnetic state on the mechanical forces and structural relaxation. We observe changes of the barrier height due to the atomic relaxation up to 200%, suggesting a very strong coupling between the structural and the magnetic degrees of freedom. The reverse interplay is weak; i.e., the magnetic state has little effect on the structural relaxation at equilibrium or under nonequilibrium, current-carrying conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrical transport and structural properties of platinum nanowires, deposited using the focussed ion beam method have been investigated. Energy dispersive X-ray spectroscopy reveals metal-rich grains (atomic composition 31% Pt and 50% Ga) in a largely non-metallic matrix of C, O and Si. Resistivity measurements (15-300 K) reveal a negative temperature coefficient with the room-temperature resistivity 80-300 times higher than that of bulk Pt. Temperature dependent current-voltage characteristics exhibit non-linear behaviour in the entire range investigated. The conductance spectra indicate increasing non-linearity with decreasing temperature, reaching 4% at 15 K. The observed electrical behaviour is explained in terms of a model for inter-grain tunnelling in disordered media, a mechanism that is consistent with the strongly disordered nature of the nanowires observed in the structure and composition analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe a self-consistent magnetic tight-binding theory based in an expansion of the Hohenberg-Kohn density functional to second order, about a non-spin-polarized reference density. We show how a first order expansion about a density having a trial input magnetic moment leads to a fixed moment model. We employ a simple set of tight-binding parameters that accurately describes electronic structure and energetics, and show these to be transferable between first row transition metals and their alloys. We make a number of calculations of the electronic structure of dilute Cr impurities in Fe, which we compare with results using the local spin density approximation. The fixed moment model provides a powerful means for interpreting complex magnetic configurations in alloys; using this approach, we are able to advance a simple and readily understood explanation for the observed anomaly in the enthalpy of mixing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The many-electron-correlated scattering (MECS) approach to quantum electronic transport was investigated in the linear-response regime [I. Bâldea and H. Köppel, Phys. Rev. B 78, 115315 (2008). The authors suggest, based on numerical calculations, that the manner in which the method imposes boundary conditions is unable to reproduce the well-known phenomena of conductance quantization. We introduce an analytical model and demonstrate that conductance quantization is correctly obtained using open system boundary conditions within the MECS approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The surface properties of the jellium model have been investigated by large supercell computations in the density functional theory-local spin-density (DFT-LSD) approach for planar slabs with up to 1000 electrons. A wide interval of densities has been explored, extending into the stability range of the Wigner crystal. Most computations have been carried out on nominally paramagnetic samples with an equal number of spin-up and spin-down electrons. The results show that within DFT-LSD spontaneous spin polarization and charge localization start nearly simultaneously at the surface for r(s) similar to 20, then, with decreasing density, they progress toward the center of the slab. Electrons are fully localized and spin polarized at r(s) = 30. At this density the charge distribution is the superposition of disjoint charge blobs, each corresponding to one electron. The distribution of blobs displays both regularities and disorder, the first being represented by well-defined planes and simple in-plane geometries, and the latter by a variety of surface defects. The surface energy, surface dipole, electric polarisability, and magnetization pattern have been determined as a function of density. All these quantities display characteristic anomalies at the density of the localization transition. The analysis of the low-frequency electric conductivity shows that in the fluid paramagnetic regime the in-plane current preferentially flows in the central region of the slab and the two spin channels are equally conducting. In the charge localized, spin-polarized regime, conductivity is primarily a surface effect, and an apparent asymmetry is observed in the two spin currents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spin asymmetry arising in an (e,2e) process using spin- polarized incoming electrons with non-relativistic energies is shown to be dominated by the fine structure effect if a suitable kinematical regime is chosen. Calculations in the distorted wave Born approximation (DWBA) for both the triple differential cross-section and the spin asymmetry are presented for the inner shell ionization of argon. This process would provide an accessible target for existing experimental set-ups.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bias-induced oxygen ion dynamics underpins a broad spectrum of electroresistive and memristive phenomena in oxide materials. Although widely studied by device-level and local voltage-current spectroscopies, the relationship between electroresistive phenomena, local electrochemical behaviors, and microstructures remains elusive. Here, the interplay between history-dependent electronic transport and electrochemical phenomena in a NiO single crystalline thin film with a number of well-defined defect types is explored on the nanometer scale using an atomic force microscopy-based technique. A variety of electrochemically-active regions were observed and spatially resolved relationship between the electronic and electrochemical phenomena was revealed. The regions with pronounced electroresistive activity were further correlated with defects identified by scanning transmission electron microscopy. Using fully coupled mechanical-electrochemical modeling, we illustrate that the spatial distribution of strain plays an important role in electrochemical and electroresistive phenomena. These studies illustrate an approach for simultaneous mapping of the electronic and ionic transport on a single defective structure level such as dislocations or interfaces, and pave the way for creating libraries of defect-specific electrochemical responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using density functional theory calculations with HSE 06 functional, we obtained the structures of spin-polarized radicals on rutile TiO2(110), which is crucial to understand the photooxidation at the atomic level, and further calculate the thermodynamic stabilities of these radicals. By analyzing the results, we identify the structural features for hole trapping in the system, and reveal the mutual effects among the geometric structures, the energy levels of trapped hole states and their hole trapping capacities. Furthermore, the results from HSE 06 functional are compared to those from DFT + U and the stability trend of radicals against the number of slabs is tested. The effect of trapped holes on two important steps of the oxygen evolution reaction, i.e. water dissociation and the oxygen removal, is investigated and discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Long metallic nanowires combine crucial factors for nonconservative current-driven atomic motion. These systems have degenerate vibrational frequencies, clustered about a Kohn anomaly in the dispersion relation, that can couple under current to form nonequilibrium modes of motion growing exponentially in time. Such motion is made possible by nonconservative current-induced forces on atoms, and we refer to it generically as the waterwheel effect. Here the connection between the waterwheel effect and the stimulated directional emission of phonons propagating along the electron flow is discussed in an intuitive manner. Nonadiabatic molecular dynamics show that waterwheel modes self-regulate by reducing the current and by populating modes in nearby frequency, leading to a dynamical steady state in which nonconservative forces are counter-balanced by the electronic friction. The waterwheel effect can be described by an appropriate effective nonequilibrium dynamical response matrix. We show that the current-induced parts of this matrix in metallic systems are long-ranged, especially at low bias. This nonlocality is essential for the characterisation of nonconservative atomic dynamics under current beyond the nanoscale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The bond formation between an oxide surface and oxygen, which is of importance for numerous surface reactions including catalytic reactions, is investigated within the framework of hybrid density functional theory that includes nonlocal Fock exchange. We show that there exists a linear correlation between the adsorption energies of oxygen on LaMO3 (M = Sc–Cu) surfaces obtained using a hybrid functional (e.g., Heyd–Scuseria–Ernzerhof) and those obtained using a semilocal density functional (e.g., Perdew–Burke–Ernzerhof) through the magnetic properties of the bulk phase as determined with a hybrid functional. The energetics of the spin-polarized surfaces follows the same trend as corresponding bulk systems, which can be treated at a much lower computational cost. The difference in adsorption energy due to magnetism is linearly correlated to the magnetization energy of bulk, that is, the energy difference between the spin-polarized and the non-spin-polarized solutions. Hence, one can estimate the correction ...

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The feasibility of laser cooling AlH and AlF is investigated using ab initio quantum chemistry. All the electronic states corresponding to the ground and lowest two excited states of the Al atom are calculated using multi-reference configuration interaction (MRCI) and the large AV6Z basis set for AlH. The smaller AVQZ basis set is used to calculate the valence electronic states of AlF. Theoretical Franck-Condon factors are determined for the A(1)Pi -> X(1)Sigma(+) transitions in both radicals and found to agree with the highly diagonal factors found experimentally, suggesting computational chemistry is an effective method for screening suitable laser cooling candidates. AlH does not appear to have a transition quite as diagonal as that in SrF (which has been laser cooled) but the A(1)Pi -> X(1)Sigma(+) transition transition of AlF is a strong candidate for cooling with just a single laser, though the cooling frequency is deep in the UV. Furthermore, the a (3)Pi -> X(1)Sigma(+) transitions are also strongly diagonal and in AlF is a practical method for obtaining very low final temperatures around 3 mu K.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The triple-differential cross section for ionization of a heavy atom is shown to depend on the spin of the incident electron even if this is polarized entirely parallel or antiparallel to its direction of propagation, the atom is unpolarized, and the spins of the ejected electrons are not resolved. Quantitative predictions for the spin asymmetry are presented in a relativistic distorted-wave Born approximation. Simple physical models are introduced to understand both these results and further symmetry properties involving the reversal of a spatial momentum component also.