102 resultados para Southern littoral
Resumo:
The Belgian coastal plain occupies a key position as it is located at the transition between the Southern North Sea Basin and the Strait of Dover. It is characterized by thick sequences (> 20 m) of Pleistocene terrestrial and littoral sediments. Yet the wider stratigraphical and palaeo-environmental significance of these sediments received little attention. In this paper we draw on the results of a recent sedimentological study based on > 100 drillings that spans the Pleistocene sequence, and present new biostratigraphical (pollen, foraminifera, ostracods) data, all revealing a complex history of deposition. The record includes evidence of the development of incised-valley systems that were initiated in the late Middle and Late Pleistocene. Five phases of fluvial incision can be identified. The majority of the infills are deposited in an estuarine environment that passes into a fluvial environment land inward, except the Weichselian infill which has a predominant fluvial origin. The greatest part of the most seaward located zone of the western coastal plain was free of valley incisions, there, shallow marine sediments built up the record. Local biostratigraphical investigations provide a timeframe. The result is placed in a regional context.
Resumo:
We have conducted a series of radiocarbon measurements on decadal samples of dendrochronologically dated wood from both hemispheres, spanning 1000 years (McCormac et al. 1998; Hogg et al. this issue). Using the data presented in Hogg et al., we show that during the period AD 950-1850 the 14C offset between the hemispheres is not constant, but varies periodically (~130 yr periodicity) with amplitudes varying between 1 and 10‰ (i.e. 8-80 yr), with a consequent effect on the 14C calibration of material from the Southern Hemisphere. A large increase in the offset occurs between AD 1245 and 1355. In this paper, we present a Southern Hemisphere high-precision calibration data set (SHCal02) that comprises measurements from New Zealand, Chile, and South Africa. This data, and a new value of 41 ± 14 yr for correction of the IntCal98 data for the period outside the range given here, is proposed for use in calibrating Southern Hemisphere 14C dates.
Resumo:
Recent measurements on dendrochronologically-dated wood from the Southern Hemisphere have shown that there are differences between the structural form of the radiocarbon calibration curves from each hemisphere. Thus, it is desirable, when possible, to use calibration data obtained from secure dendrochronologically-dated wood from the corresponding hemisphere. In this paper, we outline the recent work and point the reader to the internationally recommended data set that should be used for future calibration of Southern Hemisphere 14C dates.
Resumo:
Investigations of geomorphology, geoarchaeology, pollen, palynofacies, and charcoal indicate the comparative scales and significance of palaeoenvironmental changes throughout the Holocene at the junction between the hyper-arid hot Wadi â??Arabah desert and the front of the Mediterranean-belt Mountains of Edom in southern Jordan through a series of climatic changes and episodes of intense mining and smelting of copper ores. Early Holocene alluviation followed the impact of Neolithic grazers but climate drove fluvial geomorphic change in the Late Holocene, with a major arid episode corresponding chronologically with the â??Little Ice Ageâ?? causing widespread alluviation. The harvesting of wood for charcoal may have been sufficiently intense and widespread to affect the capacity of intensively harvested tree species to respond to a period of greater precipitation deduced for the Roman-Byzantine period - a property that affects both taphonomic and biogeographical bases for the interpretation of palynological evidence from arid-lands with substantial industrial histories. Studies of palynofacies have provided a record of human and climatic causes of soil erosion, and the changing intensity of the use of fire over time. The patterns of vegetational, climatic change and geomorphic changes are set out for this area for the last 8000 years.
Resumo:
The partially semi-arid Oldman River basin (OMRB), located in southern Alberta (Canada), has an area of 28 200 km2, is forested in its western headwater part, and is used for agriculture in its eastern part. Hydrometric measurements indicate that flow in the Oldman River has decreased by ~34% between 1913 and 2003, and it is predicted that water withdrawals will increase in the next 20 years. The objective of this study was to determine whether isotope ratio measurements can provide further insight into the water dynamics of the Oldman River and its tributaries. Surface water samples were collected monthly between December 2000 and March 2003. Groundwater samples were taken from 58 wells during one-time sampling trips. Runoff within the OMRB is currently about 70 mm year-1, with a corresponding runoff ratio of 0Ð18. Seasonal flow characteristics are markedly different upstream and downstream of the Oldman River reservoir. Upstream, sharp increases in flow in late spring and early summer are followed by a rapid decrease to base flow levels. Downstream, a prolonged high flow peak is observed due to the storage effect of the Oldman River reservoir. The seasonal variation in the isotopic composition of surface water from upstream sites is small. This suggests that peak runoff is not predominantly generated by melting snow accumulated during the preceding winter, but mainly by relatively well-mixed young groundwater. A significant increase in the d18O and d2H values in the downstream part of the basin was observed. The increase in the isotopic values is partly due to surface water and groundwater influx with progressively higher d18O and d2H values in the eastern part, and partly due to evaporation. Hence, the combination of hydrometric data with isotope measurements yields valuable insights into the water dynamics in the OMRB that may be further refined with more intensive measurement programmes in the future.
Resumo:
The Oldman River Basin (OMRB), located in southern Alberta (Canada), with an area of 28,200 km2, is mainly forested in its western part and is used for intensive agriculture in its eastern part. The objective of this paper is to estimate the nitrogen (N) budget for the Oldman River Basin as a whole and its sub-basins, and to discuss differences in the N budget between various sub-basins. Better knowledge of the N budget in this watershed may be also utilized for understanding N dynamics in similar watersheds within semi-arid climatic regions. The model used is a mass balance spreadsheet model that takes into account N inputs and N export through surface water. During the last 120 years, anthropogenic N inputs to the OMRB have increased circa 40 fold. By the end of the 20th century, the OMRB received an annualN input of about 5174 kg N km-2 yr-1, whereas only about 25 kg N km-2 yr-1 were exported via riverine flow. For the sub-basins, annual N inputs ranged from 2516 to 19011 kg N km-2 yr-1, and annual N export via riverine flows varied between 6 and 277 kg N km-2 yr-1. Over 85% of total N inputs to the OMRB are due to anthropogenic activities, including manure (55%), synthetic fertilizer (27%), and N fixation on agricultural lands (4%). Sewage accounted for less than 1%, and N inputs from atmospheric deposition and fixation in forests represented 6 and 8% respectively. Despite increasing anthropogenic N inputs, N export with riverine flow currently accounts for only 1% of the inputs, indicating thatmost of theNinputs are currently retained in the OMRB or are re-emitted into the atmosphere.