23 resultados para Solar Thermal Collector
Resumo:
This paper describes large scale tests conducted on a novel unglazed solar air collector system. The proposed system, referred to as a back-pass solar collector (BPSC), has on-site installation and aesthetic advantages over conventional unglazed transpired solar collectors (UTSC) as it is fully integrated within a standard insulated wall panel. This paper presents the results obtained from monitoring a BPSC wall panel over one year. Measurements of temperature, wind velocity and solar irradiance were taken at multiple air mass flow rates. It is shown that the length of the collector cavities has a direct impact on the efficiency of the system. It is also shown that beyond a height-to-flow ratio of 0.023m/m<sup>3</sup>/hr/m<sup>2</sup>, no additional heat output is obtained by increasing the collector height for the experimental setup in this study, but these numbers would obviously be different if the experimental setup or test environment (e.g. location and climate) change. An equation for predicting the temperature rise of the BPSC is proposed.
Resumo:
This paper explores the potential for façade located solar thermal collectors. Building typologies with limited roof space area are highlighted. A relationship exists between hot water consumption and the solar collector area; hence, a literature review of the hot water consumption of different building typologies is conducted. The review showed that there is a paucity of information on the hot water consumption of buildings, primarily attributed to the difficulty in quantifying it. The hot water consumption is typically describedusing liters per capita per day (Lcd) units, with a broad range of values existing, dependent, primarily on the building's function and location. Asimulation-based study is conducted to size solar thermal systems for different buildings and their associated hot water loads. High solar fractions,for buildings with high levels of hot water consumption, could only be achievedby using significantly largercollector surface areas. As a result, façade located solar thermal collectors are required for certain high-rise buildings that aim to provide for their hot water needs using a considerable portion of solar energy.
Resumo:
Solar heating systems have the potential to be an efficient renewable energy technology, provided they are sized correctly. Sizing a solar thermal system for domestic applications does not warrant the cost of a simulation. As a result simplified sizing procedures are required. The size of a system depends on a number of variables including the efficiency of the collector itself, the hot water demand and the solar radiation at a given location. Domestic Hot Water (DHW) demand varies with time and is assessed using a multi-parameter detailed model. Secondly, the national energy evaluation methodologies are evaluated from the perspective of solar thermal system sizing. Based on the assessment of the standards, limitations in the evaluation method for solar thermal systems are outlined and an adapted method, specific to the sizing of solar thermal systems, is proposed. The methodology is presented for two common dwelling scenarios. Results from this showed that it is difficult to achieve a high solar fraction given practical sizes of system infrastructure (storage tanks) for standard domestic properties. However, solar thermal systems can significantly offset energy loads due associated DHW consumption, particularly when sized appropriately. The presented methodology is valuable for simple solar system design and also for the quick comparison of salient criteria.
Resumo:
Harnessing solar energy to provide for the thermal needs of buildings is one of the most promising solutions to the global energy issue. Exploiting the additional surface area provided by the building’s façade can significantly increase the solar energy output. Developing a range of integrated and adaptable products that do not significantly affect the building’s aesthetics is vital to enabling the building integrated solar thermal market to expand and prosper. This work reviews and evaluates solar thermal facades in terms of the standard collector type, which they are based on, and their component make-up. Daily efficiency models are presented, based on a combination of the Hottel Whillier Bliss model and finite element simulation. Novel and market available solar thermal systems are also reviewed and evaluated using standard evaluation methods, based on experimentally determined parameters ISO 9806. Solar thermal collectors integrated directly into the facade benefit from the additional wall insulation at the back; displaying higher efficiencies then an identical collector offset from the facade. Unglazed solar thermal facades with high capacitance absorbers (e.g. concrete) experience a shift in peak maximum energy yield and display a lower sensitivity to ambient conditions than the traditional metallic based unglazed collectors. Glazed solar thermal facades, used for high temperature applications (domestic hot water), result in overheating of the building’s interior which can be reduced significantly through the inclusion of high quality wall insulation. For low temperature applications (preheating systems), the cheaper unglazed systems offer the most economic solution. The inclusion of brighter colour for the glazing and darker colour for the absorber shows the lowest efficiency reductions (<4%). Novel solar thermal façade solutions include solar collectors integrated into balcony rails, shading devices, louvers, windows or gutters.
Resumo:
EU targets require nearly zero energy buildings (NZEB) by 2020. However few monitored examples exist of how NZEB has been achieved in practise in individual residential buildings. This paper provides an example of how a low-energy building (built in 2006), has achieved nearly zero energy heating through the addition of a solar domestic hot water and space heating system (“combi system”) with a Seasonal Thermal Energy Store (STES). The paper also presents a cumulative life cycle energy and cumulative life cycle carbon analysis for the installation based on the recorded DHW and space heating demand in addition to energy payback periods and net energy ratios. In addition, the carbon and energy analysis is carried out for four other heating system scenarios including hybrid solar thermal/PV systems in order to obtain the optimal system from a carbon efficiency perspective.
Resumo:
This project involves the construction of a dwelling in the outskirts of Dublin City. Situated in a disused quarry, the house act as an inhabited bridge, spanning between natural and man made outcrops, service structures and a shared entrance staircase. The houses language derives from the structure necessary to achieve these spans.
The section internally is modeled to present a variety of scales of spaces. More intimate living spaces and bedrooms occur in a lower, north-facing wing. Taller living spaces address the south.
Incorporating rainwater harvesting, wood-gasifying boilers, on site wind powered electrical generation, solar thermal panels and very high levels of insulation the houses are close to energy neutral. The fact that the house is constructed in massive timber construction means that 250 tonnes of carbon are sequestered in its construction. The design includes a 25yar replanting strategy to replace the existing coniferous-forested surrounds with native species in a coppiced planting strategy to allow ongoing fuel for the house, and cash crops to be sold on.
Located in an area of outstanding natural beauty the planning and design of the house involved research into patterns of rural development, the relationship between man made interventions and the natural landscape and the technology of the vernacular. This latter research forms part of the themes being explored under the Kevin Kieran Arts Council / OPW Bursary
Aims / Objectives Questions
1 To design and construct a low energy place to dwell.
2 To investigate the relationship between man-made interventions and new construction in an area of outstanding natural beauty.
3 To derive a language of construction that is contemporary in nature but refers to precedents embedded in the vernacular.
4 To develop a low-carbon form of construction that allows the construction of the house to act to sequester carbon
5 To make a contemporary addition in sympathy with the qualities of the existing site
Resumo:
The future European power system will have a hierarchical structure created by layers of system control from a Supergrid via regional high-voltage transmission through to medium and low-voltage distribution. Each level will have generation sources such as large-scale offshore wind, wave, solar thermal, nuclear directly connected to this Supergrid and high levels of embedded generation, connected to the medium-voltage distribution system. It is expected that the fuel portfolio will be dominated by offshore wind in Northern Europe and PV in Southern Europe. The strategies required to manage the coordination of supply-side variability with demand-side variability will include large scale interconnection, demand side management, load aggregation and storage in the context of the Supergrid combined with the Smart Grid. The design challenge associated with this will not only include control topology, data acquisition, analysis and communications technologies, but also the selection of fuel portfolio at a macro level. This paper quantifies the amount of demand side management, storage and so-called 'back-up generation' needed to support an 80% renewable energy portfolio in Europe by 2050. © 2013 IEEE.
Resumo:
The power system of the future will have a hierarchical structure created by layers of system control from via regional high-voltage transmission through to medium and low-voltage distribution. Each level will have generation sources such as large-scale offshore wind, wave, solar thermal, nuclear directly connected to this Supergrid and high levels of embedded generation, connected to the medium-voltage distribution system. It is expected that the fuel portfolio will be dominated by offshore wind in Northern Europe and PV in Southern Europe. The strategies required to manage the coordination of supply-side variability with demand-side variability will include large scale interconnection, demand side management, load aggregation and storage in the concept of the Supergrid combined with the Smart Grid. The design challenge associated with this will not only include control topology, data acquisition, analysis and communications technologies, but also the selection of fuel portfolio at a macro level. This paper quantifies the amount of demand side management, storage and so-called ‘back-up generation’ needed to support an 80% renewable energy portfolio in Europe by 2050.
Resumo:
A low cost solar collector was developed by using polymeric components as opposed to metal and glass components of traditional solar collectors. In order to utilize polymers for the absorber of the solar collector, Carbon Nanotubes (CNT) has been added as a filler to improve the thermal conductivity and the solar absorptivity of polymers. The solar collector was designed as a multi-layer construction with considering the economic manufacturing. Through the mathematical heat transfer analysis, the performance and characteristics of the designed solar collector have been estimated. Furthermore, the prototypes of the proposed system were built and tested at a state-of-the-art solar simulator facility to evaluate the actual performance of the developed solar collector. The cost-effective polymer-CNT solar collector, which achieved efficiency as much as that of a conventional glazed flat plate solar panel, has been successfully developed.
Resumo:
A low cost flat plate solar collector was developed by using polymeric components as opposed to metal and glass components of traditional flat plate solar collectors. In order to improve the thermal and optical properties of the polymer absorber of the solar collector, Carbon Nanotubes (CNT) were added as a filler. The solar collector was designed as a multi-layer construction with an emphasis on low manufacturing costs. Through the mathematical heat transfer analysis, the thermal performance of the collector and the characteristics of the design parameters were analyzed. Furthermore, the prototypes of the proposed collector were built and tested at a state-of-the-art solar simulator facility to evaluate its actual performance. The inclusion of CNT improved significantly the properties of the polymer absorber. The key design parameters and their effects on the thermal performance were identified via the heat transfer analysis. Based on the experimental and analytical results, the cost-effective polymer-CNT solar collector, which achieved a high thermal efficiency similar to that of a conventional glazed flat plate solar panel, was successfully developed.
Resumo:
Thermal fatigue analysis based on 2D finite difference and 3D finite element methods is carried out to study the performance of solar panel structure during micro-satellite life time. Solar panel primary structure consists of honeycomb structure and composite laminates. The 2D finite difference (I-DEAS) model yields predictions of the temperature profile during one orbit. Then, 3D finite element analysis (ANSYS) is applied to predict thermal fatigue damage of solar panel structure. Meshing the whole structure with 2D multi-layer shell elements with sandwich option is not efficient, as it misses thermal response of the honeycomb structure. So we applied a mixed approach between 3D solid and 2D shell elements to model the solar panel structure without the sandwich option.
Resumo:
Concrete solar collectors offer a type of solar collector with structural, aesthetic and economic advantages over current populartechnologies. This study examines the influential parameters of concrete solar collectors. In addition to the external conditions,the performance of a concrete solar collector is influenced by the thermal properties of the concrete matrix, piping network andfluid. Geometric and fluid flow parameters also influence the performance of the concrete solar collector. A literature review ofconcrete solar collectors is conducted in order to define the benchmark parameters from which individual parameters are thencompared. The numerical model consists of a 1D pipe flow network coupled with the heat transfer in a 3D concrete domain. Thispaper is concerned with the physical parameters that define the concrete solar collector, thus a constant surface temperature isused as the exposed surface boundary condition with all other surfaces being insulated. Results show that, of the parametersinvestigated, the pipe spacing, ps, concrete conductivity, kc, and the pipe embedment depth, demb, are among those parameterswhich have greatest effect on the collector’s performance. The optimum balance between these parameters is presented withrespect to the thermal performance and discussed with reference to practical development issues.
Resumo:
Observational evidence of gentle chromospheric evaporation during the impulsive phase of a C9.1 solar flare is presented using data from the Reuven Ramaty High-Energy Solar Spectroscopic Imager and the Coronal Diagnostic Spectrometer on board the Solar and Heliospheric Observatory. Until now, evidence of gentle evaporation has often been reported during the decay phase of solar flares, where thermal conduction is thought to be the driving mechanism. Here we show that the chromospheric response to a low flux of nonthermal electrons (>= 5 cm(-2) s(-1)) results in plasma upflows of 13 +/- 16, 16 +/- 18, and 110 +/- 58 km s(-1) in the cool He I and O V emission lines and the 8 MK Fe XIX line, respectively. These findings, in conjunction with other recently reported work, now confirm that the dynamic response of the solar atmosphere is sensitively dependent on the flux of incident electrons.
Resumo:
Throughout Earth's history there have been temporal and spatial variations in the amount of visible and ultraviolet radiation received by ecosystems. This paper examines if temporal changes in these forms of energy receipt could have influenced the tempo and mode of plant diversity and speciation, focusing in particular upon Cenozoic time-scales. Evidence for changing patterns of plant diversity and speciation apparent in various fossil records and molecular phylogenies are considered alongside calculated changes in thermal and solar ultraviolet energy (specifically UV-B) over the past 50 Myr. We suggest that changes in thermal energy influx (amount and variability) affected the tempo of evolution through its influence upon community dynamics (e.g. population size, diversity, turnover, extinctions). It was not only the amount of thermal energy but also variability in its flux that may have influenced these processes, and ultimately the rate of diversification. We suggest that variations in UV-B would have influenced the mode and tempo of speciation through changes to genome stability during intervals of elevated UV-B. We argue, therefore, that although variability in thermal energy and UV-B fluxes through time may lead to the same end-point (changing the rate of diversification), the processes responsible are very different and both need to be considered when linking evolutionary processes to energy flux.