58 resultados para Rubbish and Waste


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A microwave reactor system was investigated as a potential technique to maximize sugar yield for the hydrolysis of municipal solid waste for ethanol production. Specifically, dilute acid hydrolysis of a-cellulose and waste cellulosic biomass (grass clippings) with phosphoric acid was undertaken within the microwave reactor system. The experimental data and reaction kinetic analysis indicate that the use of a microwave reactor system can successfully facilitate dilute acid hydrolysis of cellulose and waste cellulosic biomass, producing high yields of total sugars in short reaction times. The maximum yield of reducing sugars was obtained at 7.5% (w/v) phosphoric acid and 160 degrees C, corresponding to 60% of the theoretical total sugars, with a reaction time of 5 min. When using a very low acid concentration (0.4% w/v) for the hydrolysis in the microwave reactor, it was found that 10 g of total sugars/100 g dry mass was produced, which is significant considering the low acid concentration. When hydrolyzing grass clippings using the microwave reactor, the optimum conditions were an acid concentration of 2.5% (w/v), 175 degrees C with a 15 min reaction time, giving 18 g/100 g dry mass of total sugars, with xylose being the sugar with the highest yield. It was observed that pentose sugars were more easily formed but also more easily degraded, these being significantly affected by increases in acid concentration and temperature. Kinetic modeling of the data indicated that the use of microwave heating may account for an increase in reaction rate constant, k(1), found in this study in comparison with conventional systems described in the literature.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Since 1994, Irish cattle have been exposed to greater risks of acquiring Mycobacterium avium subspecies paratuberculosis (MAP) infection as a consequence of the importation of over 70,000 animals from continental Europe. In recent years, there has been an increase in the number of reported clinical cases of paratuberculosis in Ireland. This study examines the prevalence of factors that promote the introduction and within-herd transmission of Mycobacterium avium subspecies paratuberculosis (MAP) on selected Irish dairy farms in the Cork region, and the association between these factors and the results of MAP screening tests on milk sock filter residue (MFR). A total of 59 dairy farms, selected using non-random methods but apparently free of endemic paratuberculosis, were enrolled into the study. A questionnaire was used to collect data about risk factors for MAP introduction and transmission. The MFR was assessed on six occasions over 24 months for the presence of MAP, using culture and immunomagnetic separation prior to polymerase chain reaction (IMS-PCR). Furthermore, blood samples from all entire male and female animals over one year of age in 20 herds were tested by ELISA. Eighteen (31%) farms had operated as closed herds since 1994, 28 (47%) had purchased from multiple sources and 14 (24%) had either direct or indirect (progeny) contact with imported animals. Milk and colostrum were mixed on 51% of farms, while 88% of farms fed pooled milk. Thirty (51%) herds tested negative to MFR culture and IMS-PCR, 12 (20%) were MFR culture positive, 26 (44%) were IMS-PCR positive and seven (12%) were both culture and IMS-PCR positive. The probability of a positive MFR culture was significantly associated with reduced attendance at calving, and with increased use of individual calf pens and increased (but not significantly) if multiple suckling was practised. There was poor agreement between MFR culture and MFR IMS-PCR results, but moderate agreement between MFR culture and ELISA test results. This study highlights a lack of awareness among Irish dairy farmers about the effect of inadequate biosecurity on MAP introduction. Furthermore, within-herd transmission will be facilitated by traditional calf rearing and waste management practices. The findings of viable MAP in the presence of known transmission factors in non-clinically affected herds could be a prelude to long-term problems for the Irish cattle and agri-business generally.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The development of metal deposition processes based on electroless nickel, alloy and composite coatings on various surfaces has witnessed a surge in interest among researchers, with many recent applications made possible from many excellent properties. In recent years, these coatings have shown promising corrosion and wear resistance properties and large number of newer developments became most important from macro to nano level applications. After a brief review of the fundamental aspects underlying the coating processes, this paper discusses in detail about different electroless nickel alloy, composite, nano plating, bath techniques, preparation, characterization, new depositing mechanism and their recent applications, including brief notes on difficult substrate and waste treatment for green environment. Emphasis will be onto their recent progress, which will be discussed in detail and critically reviewed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have used geophysics, microbiology, and geochemistry to link large-scale (30+ m) geophysical self-potential (SP) responses at a groundwater contaminant plume with its chemistry and microbial ecology of groundwater and soil from in and around it. We have found that microbially mediated transformation of ammonia to nitrite, nitrate, and nitrogen gas was likely to have promoted a well-defined electrochemical gradient at the edge of the plume, which dominated the SP response. Phylogenetic analysis demonstrated that the plume fringe or anode of the geobattery was dominated by electrogens and biodegradative microorganisms including Proteobacteria alongside Geobacteraceae, Desulfobulbaceae, and Nitrosomonadaceae. The uncultivated candidate phylum OD1 dominated uncontaminated areas of the site. We defined the redox boundary at the plume edge using the calculated and observed electric SP geophysical measurements. Conductive soils and waste acted as an electronic conductor, which was dominated by abiotic iron cycling processes that sequester electrons generated at the plume fringe. We have suggested that such geoelectric phenomena can act as indicators of natural attenuation processes that control groundwater plumes. Further work is required to monitor electron transfer across the geoelectric dipole to fully define this phenomenon as a geobattery. This approach can be used as a novel way of monitoring microbial activity around the degradation of contaminated groundwater plumes or to monitor in situ bioelectric systems designed to manage groundwater plumes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Biodegradable polymers, such as PLA (Polylactide), come from renewable resources like corn starch and if disposed of correctly, degrade and become harmless to the ecosystem making them attractive alternatives to petroleum based polymers. PLA in particular is used in a variety of applications including medical devices, food packaging and waste disposal packaging. However, the industry faces challenges in melt processing of PLA due to its poor thermal stability which is influenced by processing temperatures and shearing.
Identification and control of suitable processing conditions is extremely challenging, usually relying on trial and error, and often sensitive to batch to batch variations. Off-line assessment in a lab environment can result in high scrap rates, long lead times and lengthy and expensive process development. Scrap rates are typically in the region of 25-30% for medical grade PLA costing between €2000-€5000/kg.
Additives are used to enhance material properties such as mechanical properties and may also have a therapeutic role in the case of bioresorbable medical devices, for example the release of calcium from orthopaedic implants such as fixation screws promotes healing. Additives can also reduce the costs involved as less of the polymer resin is required.
This study investigates the scope for monitoring, modelling and optimising processing conditions for twin screw extrusion of PLA and PLA w/calcium carbonate to achieve desired material properties. A DAQ system has been constructed to gather data from a bespoke measurement die comprising melt temperature; pressure drop along the length of the die; and UV-Vis spectral data which is shown to correlate to filler dispersion. Trials were carried out under a range of processing conditions using a Design of Experiments approach and samples were tested for mechanical properties, degradation rate and the release rate of calcium. Relationships between recorded process data and material characterisation results are explored.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Strategies available to evaluate the performance of in situ permeable reactive barriers are currently not well developed and often rely on fluid and media sampling directly from the permeable reactive barrier (PRB). Here, we investigate the utility of the self-potential (SP) method as a technique to monitor in situ PRB performance. Our field study was conducted at in situ biological PRB in Portadown, Northern Ireland, UK, which was emplaced to assist in the remediation of groundwater contamination (e.g., hydrocarbons, ammonia) that resulted from the operations and waste disposal practices of a former gasworks. Borehole SP measurements were collected during the injection of contaminant groundwater slugs in an attempt to monitor/detect the response of the microbial activity associated with the breakdown of the added contaminants into the PRB. In addition, an uncontaminated groundwater slug was injected into a different portion of the PRB as a ‘control’ and SP measurements were collected for comparison to the SP response of the contaminant slugs. The results of the SP signals due to the contaminant injections show that the magnitude of the response was relatively small (<10 mV) yet showed a consistent decrease during both contaminant injections. The net decrease in SP recorded during the contaminant injections slowly rebounded to near background values through ~44 hours post-injection. The SP response during the uncontaminated injection showed a slight, albeit negligible (within the margin of error), 1 mV increase in the measured SP signals, in contrast to the contaminant injections. The results of the SP signals recorded from the uncontaminated groundwater injection also persisted through a period of ~47 hours after injection but show a net increase in SP relative to pre-injection values. Based on the difference in SP response between the contaminated and uncontaminated injections, we suggest that the responses are likely to be the result of differences in the chemistry of the injection types (contaminated versus uncontaminated) and in situ groundwater. We argue that the SP signals associated with the contaminated injections are dominated by diffusion (electrochemical) potential, possibly enhanced by a microbial effect. While the results of our investigation show a consistent SP response associated with the contaminant injections that is dominated by diffusional effects, further studies are required in order to better understand the effect of microbial activity on SP signals and the potential utility for the SP method to detect/monitor changes that may be indicative of biological PRB performance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In an age of depleting oil reserves and increasing energy demand, humanity faces a stalemate between environmentalism and politics, where crude oil is traded at record highs yet the spotlight on being ‘green’ and sustainable is stronger than ever. A key theme on today’s political agenda is energy independence from foreign nations, and the United Kingdom is bracing itself for nuclear renaissance which is hoped will feed the rapacious centralised system that the UK is structured upon. But what if this centralised system was dissembled, and in its place stood dozens of cities which grow and monopolise from their own energy? Rather than one dominant network, would a series of autonomous city-based energy systems not offer a mutually profitable alternative? Bio-Port is a utopian vision of a ‘Free Energy City’ set in Liverpool, where the old dockyards, redundant space, and the Mersey Estuary have been transformed into bio-productive algae farms. Bio-Port Free Energy City is a utopian ideal, where energy is superfluous; in fact so abundant that meters are obsolete. The city functions as an energy generator and thrives from its own product with minimal impact upon the planet it inhabits. Algaculture is the fundamental energy source, where a matrix of algae reactors swamp the abandoned dockyards; which themselves have been further expanded and reclaimed from the River Mersey. Each year, the algae farm is capable of producing over 200 million gallons of bio-fuel, which in-turn can produce enough electricity to power almost 2 million homes. The metabolism of Free-Energy City is circular and holistic, where the waste products of one process are simply the inputs of a new one. Livestock farming – once traditionally a high-carbon countryside exercise has become urbanised. Cattle are located alongside the algae matrix, and waste gases emitted by farmyards and livestock are largely sequestered by algal blooms or anaerobically converted to natural gas. Bio-Port Free Energy City mitigates the imbalances between ecology and urbanity, and exemplifies an environment where nature and the human machine can function productively and in harmony with one another. According to James Lovelock, our population has grown in number to the point where our presence is perceptibly disabling the planet, but in order to reverse the effects of our humanist flaws, it is vital that new eco-urban utopias are realised.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Since the UN report by the Brundtland Committee, sustainability in the built environment has mainly been seen from a technical focus on single buildings or products. With the energy efficiency approaching 100%, fossil resources depleting and a considerable part of the world still in need of better prosperity, the playing field of a technical focus has become very limited. It will most probably not lead to the sustainable development needed to avoid irreversible effects on climate, energy provision and, not least, society.
Cities are complex structures of independently functioning elements, all of which are nevertheless connected to different forms of infrastructure, which provide the necessary sources or solve the release of waste material. With the current ambitions regarding carbon- or energy-neutrality, retreating again to the scale of a building is likely to fail. Within an urban context a single building cannot become fully resource-independent, and need not, from our viewpoint. Cities should be considered as an organism that has the ability to intelligently exchange sources and waste flows. Especially in terms of energy, it can be made clear that the present situation in most cities are undesired: there is simultaneous demand for heat and cold, and in summer a lot of excess energy is lost, which needs to be produced again in winter. The solution for this is a system that intelligently exchanges and stores essential sources, e.g. energy, and that optimally utilises waste flows.
This new approach will be discussed and exemplified. The Rotterdam Energy Approach and Planning (REAP) will be illustrated as a means for urban planning, whereas Swarm Planning will be introduced as another nature-based principle for swift changes towards sustainability

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hydrocarbons contamination of the marine environment generated by the offshore oil and gas industry is generated from a number of sources including oil contaminated drill cuttings and produced waters. The removal of hydrocarbons from both these sources is one of the most significant challenges facing this sector as it moves towards zero emissions. The application of a number of techniques which have been used to successfully destroy hydrocarbons in produced water and waste water effluents has previously been reported. This paper reports the application of semiconductor photocatalysis as a final polishing step for the removal of hydrocarbons from two waste effluent sources. Two reactor concepts were considered: a simple flat plate immobilised film unit, and a new rotating drum photocatalytic reactor. Both units proved to be effective in removing residual hydrocarbons from the effluent with the drum reactor reducing the hydrocarbon content by 90% under 10 minutes. 

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bioenergy is a key component of the European Union long term energy strategy across all sectors, with a target contribution of up to 14% of the energy mix by 2020. It is estimated that there is the potential for 1TWh of primary energy from biogas per million persons in Europe, derived from agricultural by-products and waste. With an agricultural sector that accounts for 75% of land area and a large number of advanced engineering firms, Northern Ireland is a region with considerable potential for an integrated biogas industry. Northern Ireland is also heavily reliant on imported fossil fuels. Despite this, the industry is underdeveloped and there is a need for a collaborative approach from research, business and policy-makers across all sectors to optimise Northern Ireland’s abundant natural resources. ‘Developing Opportunities in Bio-Energy’ (i.e. Do Bioenergy) is a recently completed project that involved both academic and specialist industrial partners. The aim was to develop a biogas research action plan for 2020 to define priorities for intersectoral regional development, co-operation and knowledge transfer in the field of production and use of biogas. Consultations were held with regional stakeholders and working groups were established to compile supporting data, decide key objectives and implementation activities. Within the context of this study it was found that biogas from feedstocks including grass, agricultural slurry, household and industrial waste have the potential to contribute from 2.5% to 11% of Northern Ireland’s total energy consumption. The economics of on-farm production were assessed, along with potential markets and alternative uses for biogas in sectors such as transport, heat and electricity. Arising from this baseline data, a Do Bioenergy was developed. The plan sets out a strategic research agenda, and details priorities and targets for 2020. The challenge for Northern Ireland is how best to utilise the biogas – as electricity, heat or vehicle fuel and in what proportions. The research areas identified were: development of small scale solutions for biogas production and use; solutions for improved nutrient management; knowledge supporting and developing the integration of biogas into the rural economy; and future crops and bio-based products. The human resources and costs for the implementation were estimated as 80 person-years and £25 million respectively. It is also clear that the development of a robust bio-gas sector requires some reform of the regulatory regime, including a planning policy framework and a need to address social acceptance issues. The Action Plan was developed from a regional perspective but the results may be applicable to other regions in Europe and elsewhere. This paper presents the methodology, results and analysis, and discussion and key findings of the Do Bioenergy report for Northern Ireland.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work deals with removal of Cesium (radioactive waste) in dilute aqueous phase by adsorption. Fullers earth was used as an adsorbent. The adsorption capacity of Fullers earth with respect to Cesium was found to be high, 26.3 mg / g of adsorbent.