97 resultados para Robinson, Peter
Resumo:
Electing a leader is a fundamental task in distributed computing. In its implicit version, only the leader must know who is the elected leader. This paper focuses on studying the message and time complexity of randomized implicit leader election in synchronous distributed networks. Surprisingly, the most "obvious" complexity bounds have not been proven for randomized algorithms. The "obvious" lower bounds of O(m) messages (m is the number of edges in the network) and O(D) time (D is the network diameter) are non-trivial to show for randomized (Monte Carlo) algorithms. (Recent results that show that even O(n) (n is the number of nodes in the network) is not a lower bound on the messages in complete networks, make the above bounds somewhat less obvious). To the best of our knowledge, these basic lower bounds have not been established even for deterministic algorithms (except for the limited case of comparison algorithms, where it was also required that some nodes may not wake up spontaneously, and that D and n were not known).
We establish these fundamental lower bounds in this paper for the general case, even for randomized Monte Carlo algorithms. Our lower bounds are universal in the sense that they hold for all universal algorithms (such algorithms should work for all graphs), apply to every D, m, and n, and hold even if D, m, and n are known, all the nodes wake up simultaneously, and the algorithms can make anyuse of node's identities. To show that these bounds are tight, we present an O(m) messages algorithm. An O(D) time algorithm is known. A slight adaptation of our lower bound technique gives rise to an O(m) message lower bound for randomized broadcast algorithms.
An interesting fundamental problem is whether both upper bounds (messages and time) can be reached simultaneously in the randomized setting for all graphs. (The answer is known to be negative in the deterministic setting). We answer this problem partially by presenting a randomized algorithm that matches both complexities in some cases. This already separates (for some cases) randomized algorithms from deterministic ones. As first steps towards the general case, we present several universal leader election algorithms with bounds that trade-off messages versus time. We view our results as a step towards understanding the complexity of universal leader election in distributed networks.
Resumo:
This paper concerns randomized leader election in synchronous distributed networks. A distributed leader election algorithm is presented for complete n-node networks that runs in O(1) rounds and (with high probability) takes only O(n-vlog3/2n) messages to elect a unique leader (with high probability). This algorithm is then extended to solve leader election on any connected non-bipartiten-node graph G in O(t(G)) time and O(t(G)n-vlog3/2n) messages, where t(G) is the mixing time of a random walk on G. The above result implies highly efficient (sublinear running time and messages) leader election algorithms for networks with small mixing times, such as expanders and hypercubes. In contrast, previous leader election algorithms had at least linear message complexity even in complete graphs. Moreover, super-linear message lower bounds are known for time-efficientdeterministic leader election algorithms. Finally, an almost-tight lower bound is presented for randomized leader election, showing that O(n-v) messages are needed for any O(1) time leader election algorithm which succeeds with high probability. It is also shown that O(n 1/3) messages are needed by any leader election algorithm that succeeds with high probability, regardless of the number of the rounds. We view our results as a step towards understanding the randomized complexity of leader election in distributed networks.
Resumo:
This paper concerns randomized leader election in synchronous distributed networks. A distributed leader election algorithm is presented for complete n-node networks that runs in O(1) rounds and (with high probability) uses only O(√ √nlog<sup>3/2</sup>n) messages to elect a unique leader (with high probability). When considering the "explicit" variant of leader election where eventually every node knows the identity of the leader, our algorithm yields the asymptotically optimal bounds of O(1) rounds and O(. n) messages. This algorithm is then extended to one solving leader election on any connected non-bipartite n-node graph G in O(τ(. G)) time and O(τ(G)n√log<sup>3/2</sup>n) messages, where τ(. G) is the mixing time of a random walk on G. The above result implies highly efficient (sublinear running time and messages) leader election algorithms for networks with small mixing times, such as expanders and hypercubes. In contrast, previous leader election algorithms had at least linear message complexity even in complete graphs. Moreover, super-linear message lower bounds are known for time-efficient deterministic leader election algorithms. Finally, we present an almost matching lower bound for randomized leader election, showing that Ω(n) messages are needed for any leader election algorithm that succeeds with probability at least 1/. e+. ε, for any small constant ε. >. 0. We view our results as a step towards understanding the randomized complexity of leader election in distributed networks.
Resumo:
We present a fully-distributed self-healing algorithm DEX, that maintains a constant degree expander network in a dynamic setting. To the best of our knowledge, our algorithm provides the first efficient distributed construction of expanders - whose expansion properties hold deterministically - that works even under an all-powerful adaptive adversary that controls the dynamic changes to the network (the adversary has unlimited computational power and knowledge of the entire network state, can decide which nodes join and leave and at what time, and knows the past random choices made by the algorithm). Previous distributed expander constructions typically provide only probabilistic guarantees on the network expansion which rapidly degrade in a dynamic setting, in particular, the expansion properties can degrade even more rapidly under adversarial insertions and deletions. Our algorithm provides efficient maintenance and incurs a low overhead per insertion/deletion by an adaptive adversary: only O(log n) rounds and O(log n) messages are needed with high probability (n is the number of nodes currently in the network). The algorithm requires only a constant number of topology changes. Moreover, our algorithm allows for an efficient implementation and maintenance of a distributed hash table (DHT) on top of DEX, with only a constant additional overhead. Our results are a step towards implementing efficient self-healing networks that have guaranteed properties (constant bounded degree and expansion) despite dynamic changes.
Resumo:
Electing a leader is a fundamental task in distributed computing. In its implicit version, only the leader must know who is the elected leader. This article focuses on studying the message and time complexity of randomized implicit leader election in synchronous distributed networks. Surprisingly, the most "obvious" complexity bounds have not been proven for randomized algorithms. In particular, the seemingly obvious lower bounds of Ω(m) messages, where m is the number of edges in the network, and Ω(D) time, where D is the network diameter, are nontrivial to show for randomized (Monte Carlo) algorithms. (Recent results, showing that even Ω(n), where n is the number of nodes in the network, is not a lower bound on the messages in complete networks, make the above bounds somewhat less obvious). To the best of our knowledge, these basic lower bounds have not been established even for deterministic algorithms, except for the restricted case of comparison algorithms, where it was also required that nodes may not wake up spontaneously and that D and n were not known. We establish these fundamental lower bounds in this article for the general case, even for randomized Monte Carlo algorithms. Our lower bounds are universal in the sense that they hold for all universal algorithms (namely, algorithms that work for all graphs), apply to every D, m, and n, and hold even if D, m, and n are known, all the nodes wake up simultaneously, and the algorithms can make any use of node's identities. To show that these bounds are tight, we present an O(m) messages algorithm. An O(D) time leader election algorithm is known. A slight adaptation of our lower bound technique gives rise to an Ω(m) message lower bound for randomized broadcast algorithms.
An interesting fundamental problem is whether both upper bounds (messages and time) can be reached simultaneously in the randomized setting for all graphs. The answer is known to be negative in the deterministic setting. We answer this problem partially by presenting a randomized algorithm that matches both complexities in some cases. This already separates (for some cases) randomized algorithms from deterministic ones. As first steps towards the general case, we present several universal leader election algorithms with bounds that tradeoff messages versus time. We view our results as a step towards understanding the complexity of universal leader election in distributed networks.
Resumo:
Motivated by the need for designing efficient and robust fully-distributed computation in highly dynamic networks such as Peer-to-Peer (P2P) networks, we study distributed protocols for constructing and maintaining dynamic network topologies with good expansion properties. Our goal is to maintain a sparse (bounded degree) expander topology despite heavy {\em churn} (i.e., nodes joining and leaving the network continuously over time). We assume that the churn is controlled by an adversary that has complete knowledge and control of what nodes join and leave and at what time and has unlimited computational power, but is oblivious to the random choices made by the algorithm. Our main contribution is a randomized distributed protocol that guarantees with high probability the maintenance of a {\em constant} degree graph with {\em high expansion} even under {\em continuous high adversarial} churn. Our protocol can tolerate a churn rate of up to $O(n/\poly\log(n))$ per round (where $n$ is the stable network size). Our protocol is efficient, lightweight, and scalable, and it incurs only $O(\poly\log(n))$ overhead for topology maintenance: only polylogarithmic (in $n$) bits needs to be processed and sent by each node per round and any node's computation cost per round is also polylogarithmic. The given protocol is a fundamental ingredient that is needed for the design of efficient fully-distributed algorithms for solving fundamental distributed computing problems such as agreement, leader election, search, and storage in highly dynamic P2P networks and enables fast and scalable algorithms for these problems that can tolerate a large amount of churn.
Resumo:
We study the fundamental Byzantine leader election problem in dynamic networks where the topology can change from round to round and nodes can also experience heavy {\em churn} (i.e., nodes can join and leave the network continuously over time). We assume the full information model where the Byzantine nodes have complete knowledge about the entire state of the network at every round (including random choices made by all the nodes), have unbounded computational power and can deviate arbitrarily from the protocol. The churn is controlled by an adversary that has complete knowledge and control over which nodes join and leave and at what times and also may rewire the topology in every round and has unlimited computational power, but is oblivious to the random choices made by the algorithm. Our main contribution is an $O(\log^3 n)$ round algorithm that achieves Byzantine leader election under the presence of up to $O({n}^{1/2 - \epsilon})$ Byzantine nodes (for a small constant $\epsilon > 0$) and a churn of up to \\$O(\sqrt{n}/\poly\log(n))$ nodes per round (where $n$ is the stable network size).The algorithm elects a leader with probability at least $1-n^{-\Omega(1)}$ and guarantees that it is an honest node with probability at least $1-n^{-\Omega(1)}$; assuming the algorithm succeeds, the leader's identity will be known to a $1-o(1)$ fraction of the honest nodes. Our algorithm is fully-distributed, lightweight, and is simple to implement. It is also scalable, as it runs in polylogarithmic (in $n$) time and requires nodes to send and receive messages of only polylogarithmic size per round.To the best of our knowledge, our algorithm is the first scalable solution for Byzantine leader election in a dynamic network with a high rate of churn; our protocol can also be used to solve Byzantine agreement in a straightforward way.We also show how to implement an (almost-everywhere) public coin with constant bias in a dynamic network with Byzantine nodes and provide a mechanism for enabling honest nodes to store information reliably in the network, which might be of independent interest.
Resumo:
We present a fully-distributed self-healing algorithm dex that maintains a constant degree expander network in a dynamic setting. To the best of our knowledge, our algorithm provides the first efficient distributed construction of expanders—whose expansion properties holddeterministically—that works even under an all-powerful adaptive adversary that controls the dynamic changes to the network (the adversary has unlimited computational power and knowledge of the entire network state, can decide which nodes join and leave and at what time, and knows the past random choices made by the algorithm). Previous distributed expander constructions typically provide only probabilistic guarantees on the network expansion whichrapidly degrade in a dynamic setting; in particular, the expansion properties can degrade even more rapidly under adversarial insertions and deletions. Our algorithm provides efficient maintenance and incurs a low overhead per insertion/deletion by an adaptive adversary: only O(logn)O(logn) rounds and O(logn)O(logn) messages are needed with high probability (n is the number of nodes currently in the network). The algorithm requires only a constant number of topology changes. Moreover, our algorithm allows for an efficient implementation and maintenance of a distributed hash table on top of dex with only a constant additional overhead. Our results are a step towards implementing efficient self-healing networks that have guaranteed properties (constant bounded degree and expansion) despite dynamic changes.
Gopal Pandurangan has been supported in part by Nanyang Technological University Grant M58110000, Singapore Ministry of Education (MOE) Academic Research Fund (AcRF) Tier 2 Grant MOE2010-T2-2-082, MOE AcRF Tier 1 Grant MOE2012-T1-001-094, and the United States-Israel Binational Science Foundation (BSF) Grant 2008348. Peter Robinson has been supported by Grant MOE2011-T2-2-042 “Fault-tolerant Communication Complexity in Wireless Networks” from the Singapore MoE AcRF-2. Work done in part while the author was at the Nanyang Technological University and at the National University of Singapore. Amitabh Trehan has been supported by the Israeli Centers of Research Excellence (I-CORE) program (Center No. 4/11). Work done in part while the author was at Hebrew University of Jerusalem and at the Technion and supported by a Technion fellowship.